Managing data provenance for bioinformatics workflows using AProvBio

Rodrigo Almeida, Waldeyr M. C. Silva, Klayton Castro, Aleteia P. F. Araujo, M. E. Walter, Sérgio Lifschitz, M. Holanda
{"title":"Managing data provenance for bioinformatics workflows using AProvBio","authors":"Rodrigo Almeida, Waldeyr M. C. Silva, Klayton Castro, Aleteia P. F. Araujo, M. E. Walter, Sérgio Lifschitz, M. Holanda","doi":"10.1504/IJCBDD.2019.10021271","DOIUrl":null,"url":null,"abstract":"Scientific experiments in bioinformatics are often executed as computational workflows. Data provenance involves documenting the history, and the paths of the input data, from the beginning to the end of an experiment. AProvBio is an architecture that enables the capture and storage of data provenance for bioinformatics workflows using the PROV-DM standard model. AProvBio works with three types of data provenance: prospect, retrospect, and the user-defined type. Given how graphs conveniently express PROV-DM, we have designed and implemented a simulator for storing the data provenance in a graph database system. This paper presents details and implementation aspects of our architecture, and an evaluation of AProvBio through the carrying out of two real case scenarios.","PeriodicalId":13612,"journal":{"name":"Int. J. Comput. Biol. Drug Des.","volume":"23 1","pages":"153-170"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Biol. Drug Des.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJCBDD.2019.10021271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Scientific experiments in bioinformatics are often executed as computational workflows. Data provenance involves documenting the history, and the paths of the input data, from the beginning to the end of an experiment. AProvBio is an architecture that enables the capture and storage of data provenance for bioinformatics workflows using the PROV-DM standard model. AProvBio works with three types of data provenance: prospect, retrospect, and the user-defined type. Given how graphs conveniently express PROV-DM, we have designed and implemented a simulator for storing the data provenance in a graph database system. This paper presents details and implementation aspects of our architecture, and an evaluation of AProvBio through the carrying out of two real case scenarios.
使用AProvBio管理生物信息学工作流程的数据来源
生物信息学中的科学实验通常作为计算工作流程执行。数据来源包括记录从实验开始到结束的历史和输入数据的路径。AProvBio是一种架构,可以使用provo - dm标准模型捕获和存储生物信息学工作流的数据来源。AProvBio处理三种类型的数据来源:前景类型、回顾类型和用户定义类型。考虑到图形如何方便地表达provd - dm,我们设计并实现了一个用于在图形数据库系统中存储数据来源的模拟器。本文介绍了我们架构的细节和实现方面,并通过执行两个真实案例场景对AProvBio进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信