A hypothesis testing approach to word recognition using dynamic feature selection

Q4 Computer Science
Liang Li, T. Ho, J. Hull, S. Srihari
{"title":"A hypothesis testing approach to word recognition using dynamic feature selection","authors":"Liang Li, T. Ho, J. Hull, S. Srihari","doi":"10.1109/ICPR.1992.201846","DOIUrl":null,"url":null,"abstract":"A top-down approach to word recognition is proposed. Discussions are presented on dynamically selecting the most effective feature combinations, which are applied to discriminate between a limited set of word hypotheses.<<ETX>>","PeriodicalId":34917,"journal":{"name":"模式识别与人工智能","volume":"35 1","pages":"586-589"},"PeriodicalIF":0.0000,"publicationDate":"1992-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"模式识别与人工智能","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1109/ICPR.1992.201846","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 9

Abstract

A top-down approach to word recognition is proposed. Discussions are presented on dynamically selecting the most effective feature combinations, which are applied to discriminate between a limited set of word hypotheses.<>
基于动态特征选择的词识别假设检验方法
提出了一种自顶向下的词识别方法。讨论了动态选择最有效的特征组合,用于区分有限的一组词假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
模式识别与人工智能
模式识别与人工智能 Computer Science-Artificial Intelligence
CiteScore
1.60
自引率
0.00%
发文量
3316
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信