{"title":"Assessing Mechanical Integrity of Expanding Cement","authors":"Harshkumar Patel, S. Salehi, C. Teodoriu","doi":"10.2118/195225-MS","DOIUrl":null,"url":null,"abstract":"\n Cement sheath is a critical barrier for maintaining well integrity. Formation of micro-annulus due to volume shrinkage and/or pressure/temperature changes is the major challenge in achieving good hydraulic seal. Expansion of cement after the placement is a promising solution to this problem. Expanding cement can potentially close micro-annulus and further achieve pre-stress condition because of the confinement. Primary aim of this paper is to investigate mechanical integrity of different pre-stressed cement system under loading condition.\n To achieve the objectives, finite element modelling approach was employed. Three dimensional computer models consisting of liner, cement sheath, and casing were developed. Pre-stress condition was generated by modelling contact interference at the cement-casing interface. Three cement (ductile, moderately ductile, and brittle) were considered for simulation cases. Wellbore and annulus pressure were applied. Resultant, radial, hoop, and maximum shear stresses were investigated at the cement-pipe interface to assess mechanical integrity. For comparison purpose, similar simulations were conducted using cement sheath without pre-stress and cement system representing uniform volume shrinkage and presence micro-annulus.\n For constant wellbore pressure, the radial stresses observed in all three types of cement system were practically similar and decreased as pre-stress was increased. Hoop stress also reduced with increase in compressive pre-load. However, their absolute values were distinct for different cement types. These results indicate that cement system with compressive pre-load can notably reduce the risk of radial crack failure by providing compensatory compressive stress. However, on the contrary, the maximum shear stress developed at cement-pipe interface, increased because of pre-load. This can compromise the mechanical integrity by reducing the safety margin on shear failure. Thus, the selection of expansive cement should be made after carefully weighing reduced risk of radial failure/debonding against the increased risks of shear failure.\n This paper provides novel information on expanding cement from the perspective of mechanical stresses and integrity. Modelling approach discussed in this work, can be used to estimate amount of pre-stress required for a selected cement system under anticipated wellbore loads.","PeriodicalId":11150,"journal":{"name":"Day 2 Wed, April 10, 2019","volume":"80 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Wed, April 10, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/195225-MS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15
Abstract
Cement sheath is a critical barrier for maintaining well integrity. Formation of micro-annulus due to volume shrinkage and/or pressure/temperature changes is the major challenge in achieving good hydraulic seal. Expansion of cement after the placement is a promising solution to this problem. Expanding cement can potentially close micro-annulus and further achieve pre-stress condition because of the confinement. Primary aim of this paper is to investigate mechanical integrity of different pre-stressed cement system under loading condition.
To achieve the objectives, finite element modelling approach was employed. Three dimensional computer models consisting of liner, cement sheath, and casing were developed. Pre-stress condition was generated by modelling contact interference at the cement-casing interface. Three cement (ductile, moderately ductile, and brittle) were considered for simulation cases. Wellbore and annulus pressure were applied. Resultant, radial, hoop, and maximum shear stresses were investigated at the cement-pipe interface to assess mechanical integrity. For comparison purpose, similar simulations were conducted using cement sheath without pre-stress and cement system representing uniform volume shrinkage and presence micro-annulus.
For constant wellbore pressure, the radial stresses observed in all three types of cement system were practically similar and decreased as pre-stress was increased. Hoop stress also reduced with increase in compressive pre-load. However, their absolute values were distinct for different cement types. These results indicate that cement system with compressive pre-load can notably reduce the risk of radial crack failure by providing compensatory compressive stress. However, on the contrary, the maximum shear stress developed at cement-pipe interface, increased because of pre-load. This can compromise the mechanical integrity by reducing the safety margin on shear failure. Thus, the selection of expansive cement should be made after carefully weighing reduced risk of radial failure/debonding against the increased risks of shear failure.
This paper provides novel information on expanding cement from the perspective of mechanical stresses and integrity. Modelling approach discussed in this work, can be used to estimate amount of pre-stress required for a selected cement system under anticipated wellbore loads.