{"title":"Investigation on the density of Al2O3/R1234yf, TiO2/R1234yf and CuO/R1234yf nano-refrigerants","authors":"Bibin Bs, Edison Gundabattini","doi":"10.1177/23977914221098614","DOIUrl":null,"url":null,"abstract":"Nano-enhanced refrigerant is one of the promising heat transfer fluids in refrigeration systems. It has the capability to boost the efficiency of vapour compression refrigeration and air conditioning systems. In heat transfer application, the density of the fluid plays a crucial role in identifying various heat transfer characteristics such as the Reynolds number, Nusselt number, the friction factor and the pressure loss. Compared to thermal conductivity and viscosity, determining the density of nanofluids has received very less attention in research. The liquid and vapour densities of alumina (Al2O3), titanium dioxide (TiO2) and cupric oxide (CuO) nanoparticles suspended in 2,3,3,3-tetrafluoropropene (R1234yf) are investigated in this study. The Pak and Cho model was adopted to examine the densities of nano-refrigerants as the volume concentration of particles in the base refrigerant and temperature varies from 1% to 5% and 273 to 323 K respectively. The models are validated using the experimental studies conducted by various researchers on different nano-refrigerants. The analysis results indicated that the liquid and vapour densities of CuO/R1234yf nano-refrigerant are 10.3% and 62.93% greater than that of Al2O3/R1234yf at 5% particle concentration. From the liquid and vapour density point of view, the CuO/R1234yf nano-refrigerant is superior over Al2O3/R1234yf and TiO2/R1234yf. Results also indicated that at 308 K the liquid phase density of CuO added with R1234yf nano-refrigerant is higher by 12.99% and 8.65% than R134a and R141b respectively. Hence CuO/R1234yf significantly enhances the performance of refrigeration systems.","PeriodicalId":44789,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2022-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/23977914221098614","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 2
Abstract
Nano-enhanced refrigerant is one of the promising heat transfer fluids in refrigeration systems. It has the capability to boost the efficiency of vapour compression refrigeration and air conditioning systems. In heat transfer application, the density of the fluid plays a crucial role in identifying various heat transfer characteristics such as the Reynolds number, Nusselt number, the friction factor and the pressure loss. Compared to thermal conductivity and viscosity, determining the density of nanofluids has received very less attention in research. The liquid and vapour densities of alumina (Al2O3), titanium dioxide (TiO2) and cupric oxide (CuO) nanoparticles suspended in 2,3,3,3-tetrafluoropropene (R1234yf) are investigated in this study. The Pak and Cho model was adopted to examine the densities of nano-refrigerants as the volume concentration of particles in the base refrigerant and temperature varies from 1% to 5% and 273 to 323 K respectively. The models are validated using the experimental studies conducted by various researchers on different nano-refrigerants. The analysis results indicated that the liquid and vapour densities of CuO/R1234yf nano-refrigerant are 10.3% and 62.93% greater than that of Al2O3/R1234yf at 5% particle concentration. From the liquid and vapour density point of view, the CuO/R1234yf nano-refrigerant is superior over Al2O3/R1234yf and TiO2/R1234yf. Results also indicated that at 308 K the liquid phase density of CuO added with R1234yf nano-refrigerant is higher by 12.99% and 8.65% than R134a and R141b respectively. Hence CuO/R1234yf significantly enhances the performance of refrigeration systems.
期刊介绍:
Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems is a peer-reviewed scientific journal published since 2004 by SAGE Publications on behalf of the Institution of Mechanical Engineers. The journal focuses on research in the field of nanoengineering, nanoscience and nanotechnology and aims to publish high quality academic papers in this field. In addition, the journal is indexed in several reputable academic databases and abstracting services, including Scopus, Compendex, and CSA's Advanced Polymers Abstracts, Composites Industry Abstracts, and Earthquake Engineering Abstracts.