Transmission-reciprocal transmission index and coindex of graphs

IF 0.3 Q4 COMPUTER SCIENCE, THEORY & METHODS
H. Ramane, Deepa V. Kitturmath, Kavita Bhajantri
{"title":"Transmission-reciprocal transmission index and coindex of graphs","authors":"H. Ramane, Deepa V. Kitturmath, Kavita Bhajantri","doi":"10.2478/ausi-2022-0006","DOIUrl":null,"url":null,"abstract":"Abstract The transmission of a vertex u in a connected graph G is defined as σ(u) = Σv∈V(G) d(u, v) and reciprocal transmission of a vertex u is defined as rs(u)=∑v∈V(G)1d(u,v) rs(u) = \\sum\\nolimits_{v \\in V\\left( G \\right)} {{1 \\over {d\\left( {u,v} \\right)}}} , where d(u, v) is the distance between vertex u and v in G. In this paper we define new distance based topological index of a connected graph G called transmission-reciprocal transmission index TRT(G)=∑uv∈E(G)(σ(u)rs(u)+σ(v)rs(v)) TRT\\left( G \\right) = \\sum\\nolimits_{uv \\in E\\left( G \\right)} {\\left( {{{\\sigma \\left( u \\right)} \\over {rs\\left( u \\right)}} + {{\\sigma \\left( v \\right)} \\over {rs\\left( v \\right)}}} \\right)} and its coindex TRT¯(G)=∑uv∉E(G)(σ(u)rs(u)+σ(v)rs(v)) \\overline {TRT} \\left( G \\right) = \\sum\\nolimits_{uv \\notin E\\left( G \\right)} {\\left( {{{\\sigma \\left( u \\right)} \\over {rs\\left( u \\right)}} + {{\\sigma \\left( v \\right)} \\over {rs\\left( v \\right)}}} \\right)} , where E(G) is the edge set of a graph G and establish the relation between TRT(G) and TRT¯(G) \\overline {TRT} \\left( G \\right) (G). Further compute this index for some standard class of graphs and obtain bounds for it.","PeriodicalId":41480,"journal":{"name":"Acta Universitatis Sapientiae Informatica","volume":"8 1","pages":"84 - 103"},"PeriodicalIF":0.3000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Universitatis Sapientiae Informatica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ausi-2022-0006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract The transmission of a vertex u in a connected graph G is defined as σ(u) = Σv∈V(G) d(u, v) and reciprocal transmission of a vertex u is defined as rs(u)=∑v∈V(G)1d(u,v) rs(u) = \sum\nolimits_{v \in V\left( G \right)} {{1 \over {d\left( {u,v} \right)}}} , where d(u, v) is the distance between vertex u and v in G. In this paper we define new distance based topological index of a connected graph G called transmission-reciprocal transmission index TRT(G)=∑uv∈E(G)(σ(u)rs(u)+σ(v)rs(v)) TRT\left( G \right) = \sum\nolimits_{uv \in E\left( G \right)} {\left( {{{\sigma \left( u \right)} \over {rs\left( u \right)}} + {{\sigma \left( v \right)} \over {rs\left( v \right)}}} \right)} and its coindex TRT¯(G)=∑uv∉E(G)(σ(u)rs(u)+σ(v)rs(v)) \overline {TRT} \left( G \right) = \sum\nolimits_{uv \notin E\left( G \right)} {\left( {{{\sigma \left( u \right)} \over {rs\left( u \right)}} + {{\sigma \left( v \right)} \over {rs\left( v \right)}}} \right)} , where E(G) is the edge set of a graph G and establish the relation between TRT(G) and TRT¯(G) \overline {TRT} \left( G \right) (G). Further compute this index for some standard class of graphs and obtain bounds for it.
传输-互反传输指数和图的协指数
定义连通图G中顶点u的传输为σ(u) = Σv∈V(G) d(u, V),定义顶点u的互反传输为rs(u)=∑V∈V(G)1d(u, V) rs(u)= \sum\nolimits_{v \in v\left(g) \right)} {{1 \over {d\left( {u,v} \right)}}} ,其中d(u, v)为连通图G中顶点u与v之间的距离。本文定义了连通图G新的基于距离的拓扑指标,称为传输-互反传输指标TRT(G)=∑uv∈E(G)(σ(u)rs(u)+σ(v)rs(v)) TRT\left(g) \right) = \sum\nolimits_{紫外线 \in e\left(g) \right)} {\left( {{{\sigma \left(u) \right)} \over {rs\left(u) \right)}} + {{\sigma \left(v) \right)} \over {rs\left(v) \right)}}} \right)} ,其协指数TRT¯(G)=∑uv∈E(G)(σ(u)rs(u)+σ(v)rs(v)) \overline {TRT} \left(g) \right) = \sum\nolimits_{紫外线 \notin e\left(g) \right)} {\left( {{{\sigma \left(u) \right)} \over {rs\left(u) \right)}} + {{\sigma \left(v) \right)} \over {rs\left(v) \right)}}} \right)} ,其中E(G)为图G的边集,建立TRT(G)与TRT¯(G)之间的关系 \overline {TRT} \left(g) \right) (G).进一步对某些标准图类计算该指标并得到其界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Universitatis Sapientiae Informatica
Acta Universitatis Sapientiae Informatica COMPUTER SCIENCE, THEORY & METHODS-
自引率
0.00%
发文量
9
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信