{"title":"Device analysis of CuInSe/sub 2/ solar cells","authors":"K. Mitchell, H.I. Liu","doi":"10.1109/PVSC.1988.105952","DOIUrl":null,"url":null,"abstract":"Analyses are presented of greater than 12% efficient ZnO/thin CdS/CIS devices, focusing on spectral response and light and dark current-voltage (I-V) over a broad range of intensities (0.64-100 mW/cm/sup 2/) and temperatures (100-300 K). Other measurements presented include voltage-dependent spectral response, capacitance-conductance versus voltage, frequency, temperature, and CIS film and contact resistance. It is found that recombination controls device performance above 200 K and tunneling and series resistance dominate low-temperature device behavior. 14.1%, 3.5 cm/sup 2/ active area cell and 11.2%, 938 cm/sup 2/ module aperture area efficiencies are reported.<<ETX>>","PeriodicalId":10562,"journal":{"name":"Conference Record of the Twentieth IEEE Photovoltaic Specialists Conference","volume":"26 1","pages":"1461-1468 vol.2"},"PeriodicalIF":0.0000,"publicationDate":"1988-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Record of the Twentieth IEEE Photovoltaic Specialists Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC.1988.105952","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Analyses are presented of greater than 12% efficient ZnO/thin CdS/CIS devices, focusing on spectral response and light and dark current-voltage (I-V) over a broad range of intensities (0.64-100 mW/cm/sup 2/) and temperatures (100-300 K). Other measurements presented include voltage-dependent spectral response, capacitance-conductance versus voltage, frequency, temperature, and CIS film and contact resistance. It is found that recombination controls device performance above 200 K and tunneling and series resistance dominate low-temperature device behavior. 14.1%, 3.5 cm/sup 2/ active area cell and 11.2%, 938 cm/sup 2/ module aperture area efficiencies are reported.<>