On the monogenity of pure quartic relative extensions of \({{\mathbb {Q}}}(i)\)

IF 0.5 Q3 MATHEMATICS
István Gaál, László Remete
{"title":"On the monogenity of pure quartic relative extensions of \\({{\\mathbb {Q}}}(i)\\)","authors":"István Gaál,&nbsp;László Remete","doi":"10.1007/s44146-023-00092-9","DOIUrl":null,"url":null,"abstract":"<div><p>We consider pure quartic relative extensions of the number field <span>\\({{\\mathbb {Q}}}(i)\\)</span> of type <span>\\(K={{\\mathbb {Q}}}(\\root 4 \\of {a+bi})\\)</span>, where <span>\\(a,b\\in {{\\mathbb {Z}}}\\)</span> and <span>\\(b\\ne 0\\)</span>, such that <span>\\(a+bi\\in {{\\mathbb {Z}}}[i]\\)</span> is square-free. We describe integral bases of these fields. The index form equation is reduced to a relative cubic Thue equation over <span>\\({{\\mathbb {Q}}}(i)\\)</span> and some corresponding quadratic form equations. We consider monogenity of <i>K</i> and relative monogenity of <i>K</i> over <span>\\({{\\mathbb {Q}}}(i)\\)</span>. We shall show how our former method based on the factors of the index form can be used in the relative case to exclude relative monogenity in some cases.\n</p></div>","PeriodicalId":46939,"journal":{"name":"ACTA SCIENTIARUM MATHEMATICARUM","volume":"89 3-4","pages":"357 - 371"},"PeriodicalIF":0.5000,"publicationDate":"2023-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s44146-023-00092-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACTA SCIENTIARUM MATHEMATICARUM","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s44146-023-00092-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider pure quartic relative extensions of the number field \({{\mathbb {Q}}}(i)\) of type \(K={{\mathbb {Q}}}(\root 4 \of {a+bi})\), where \(a,b\in {{\mathbb {Z}}}\) and \(b\ne 0\), such that \(a+bi\in {{\mathbb {Z}}}[i]\) is square-free. We describe integral bases of these fields. The index form equation is reduced to a relative cubic Thue equation over \({{\mathbb {Q}}}(i)\) and some corresponding quadratic form equations. We consider monogenity of K and relative monogenity of K over \({{\mathbb {Q}}}(i)\). We shall show how our former method based on the factors of the index form can be used in the relative case to exclude relative monogenity in some cases.

的纯四次相对扩展的单一性 $${{\mathbb {Q}}}(i)$$
我们考虑类型为\(K={{\mathbb {Q}}}(\root 4 \of {a+bi})\)的数字域\({{\mathbb {Q}}}(i)\)的纯四次相对扩展,其中\(a,b\in {{\mathbb {Z}}}\)和\(b\ne 0\),使得\(a+bi\in {{\mathbb {Z}}}[i]\)是无平方的。我们描述了这些场的积分基。指标形式方程简化为\({{\mathbb {Q}}}(i)\)上的相对三次Thue方程和相应的二次形式方程。我们考虑K的单一性和K / \({{\mathbb {Q}}}(i)\)的相对单一性。我们将展示如何在相对情况下使用基于指数形式因子的前一种方法来排除某些情况下的相对单一性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
39
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信