Finite element parametric study of RC beams strengthenedwith carbon nanotubes modified composites

IF 2.9 4区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Mohammad R. Irshidat, Rami S. Alhusban
{"title":"Finite element parametric study of RC beams strengthenedwith carbon nanotubes modified composites","authors":"Mohammad R. Irshidat, Rami S. Alhusban","doi":"10.12989/CAC.2021.27.2.131","DOIUrl":null,"url":null,"abstract":"This paper aims at investigating the capability of different FRP/concrete interface models to predict the effect of carbon nanotubes on the flexural behavior of RC beams strengthened with CFRP. Three different interfacial bond models are proposed to simulate the adhesion between CFRP composites and concrete, namely: full bond, nonlinear spring element, and cohesive zone model. 3D Nonlinear finite element model is developed then validated using experimental work conducted by the authors in a previous investigation. Cohesive zone model (CZM) has the best agreement with the experimental results in terms of load-deflection response. CZM is the only bond model that accurately predicted the cracks patterns and failure mode of the strengthened RC beams. The FE model is then expanded to predict the effect of bond strength on the flexural capacity of RC beams strengthened with externally bonded CNTs modified CFRP composites using CZM bond model. The results reveal that the flexural capacity of the strengthened beams increases with increasing the bond strength value. However, only 23% and 22% of the CFRP stress and strain capacity; in the case of full bond; can be utilized before failure.","PeriodicalId":50625,"journal":{"name":"Computers and Concrete","volume":"30 1","pages":"131"},"PeriodicalIF":2.9000,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers and Concrete","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.12989/CAC.2021.27.2.131","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 1

Abstract

This paper aims at investigating the capability of different FRP/concrete interface models to predict the effect of carbon nanotubes on the flexural behavior of RC beams strengthened with CFRP. Three different interfacial bond models are proposed to simulate the adhesion between CFRP composites and concrete, namely: full bond, nonlinear spring element, and cohesive zone model. 3D Nonlinear finite element model is developed then validated using experimental work conducted by the authors in a previous investigation. Cohesive zone model (CZM) has the best agreement with the experimental results in terms of load-deflection response. CZM is the only bond model that accurately predicted the cracks patterns and failure mode of the strengthened RC beams. The FE model is then expanded to predict the effect of bond strength on the flexural capacity of RC beams strengthened with externally bonded CNTs modified CFRP composites using CZM bond model. The results reveal that the flexural capacity of the strengthened beams increases with increasing the bond strength value. However, only 23% and 22% of the CFRP stress and strain capacity; in the case of full bond; can be utilized before failure.
碳纳米管改性复合材料加固RC梁的有限元参数研究
本文旨在研究不同FRP/混凝土界面模型预测碳纳米管对碳纤维增强混凝土梁抗弯性能影响的能力。提出了三种不同的界面粘结模型来模拟CFRP复合材料与混凝土之间的粘结,即:全粘结模型、非线性弹簧单元模型和粘结区模型。建立了三维非线性有限元模型,并利用作者在之前的研究中进行的实验工作进行了验证。黏聚区模型(CZM)在荷载-挠度响应方面与试验结果最吻合。CZM是唯一能准确预测钢筋混凝土加固梁裂缝形态和破坏模式的粘结模型。然后对有限元模型进行扩展,使用CZM粘结模型预测粘结强度对外粘结CNTs改性CFRP复合材料加固RC梁抗弯能力的影响。结果表明,加固梁的抗弯承载力随着粘结强度值的增大而增大。但CFRP的应力应变能力仅为23%和22%;在全额担保的情况下;可在故障前利用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers and Concrete
Computers and Concrete 工程技术-材料科学:表征与测试
CiteScore
8.60
自引率
7.30%
发文量
0
审稿时长
13.5 months
期刊介绍: Computers and Concrete is An International Journal that focuses on the computer applications in be considered suitable for publication in the journal. The journal covers the topics related to computational mechanics of concrete and modeling of concrete structures including plasticity fracture mechanics creep thermo-mechanics dynamic effects reliability and safety concepts automated design procedures stochastic mechanics performance under extreme conditions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信