{"title":"The assessment of consecutive 4D-CT scans during simulation for lung stereotactic body radiation therapy patients","authors":"M. Savanović, B. Štrbac, D. Jaroš, J. Foulquier","doi":"10.2478/pjmpe-2020-0023","DOIUrl":null,"url":null,"abstract":"Abstract Purpose: To evaluate the breathing amplitude, tumor motion, patient positioning, and treatment volumes among consecutive four-dimensional computed tomography (4D-CT) scans, during the simulation for lung stereotactic body radiation therapy (SBRT). Material and methods: The variation and shape of the breathing amplitude, patient positioning, and treatment volumes were evaluated for 55 lung cancer patients after consecutive 4D-CT acquisitions, scanned at one-week intervals. The impact of variation in the breathing amplitude on lung tumor motion was determined for 20 patients. The gross tumor volume (GTV) was contoured from a free-breathing CT scan and at ten phases of the respiratory cycle, for both 4D-CTs (440 phases in total). Results: Breathing amplitude decreased by 3.6 (3.4-4.9) mm, tumor motion by 3.2 (0.4-5.0) mm while breathing period increased by 4 (2-6) s, inter-scan for 20 patients. Intra-scan variation was 4 times greater for the breathing amplitude, 5 times for the breathing period, and 8 times for the breathing cycle, comparing irregular versus regular breathing patterns for 55 patients. Using coaching, the breathing amplitude increases 3 to 8 mm, and the breathing period 2 to 6 s. Differences in the contoured treatment volumes were less than 10% between consecutive scans. Patient positioning remained stable, with a small inter-scan difference of 1.1 (0.6-1.4) mm. Conclusion: Decreasing the inter-scan breathing amplitude decreases the tumor motion reciprocally. When the breathing amplitude decreases, the breathing period increases at inter- and intra-scan, especially during irregular breathing. Coaching improves respiration, keeping the initial shape of the breathing amplitude. Contoured treatment volumes and patient positioning were reproducible through successive scans.","PeriodicalId":53955,"journal":{"name":"Polish Journal of Medical Physics and Engineering","volume":"16 3 1","pages":"193 - 199"},"PeriodicalIF":0.7000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polish Journal of Medical Physics and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/pjmpe-2020-0023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract Purpose: To evaluate the breathing amplitude, tumor motion, patient positioning, and treatment volumes among consecutive four-dimensional computed tomography (4D-CT) scans, during the simulation for lung stereotactic body radiation therapy (SBRT). Material and methods: The variation and shape of the breathing amplitude, patient positioning, and treatment volumes were evaluated for 55 lung cancer patients after consecutive 4D-CT acquisitions, scanned at one-week intervals. The impact of variation in the breathing amplitude on lung tumor motion was determined for 20 patients. The gross tumor volume (GTV) was contoured from a free-breathing CT scan and at ten phases of the respiratory cycle, for both 4D-CTs (440 phases in total). Results: Breathing amplitude decreased by 3.6 (3.4-4.9) mm, tumor motion by 3.2 (0.4-5.0) mm while breathing period increased by 4 (2-6) s, inter-scan for 20 patients. Intra-scan variation was 4 times greater for the breathing amplitude, 5 times for the breathing period, and 8 times for the breathing cycle, comparing irregular versus regular breathing patterns for 55 patients. Using coaching, the breathing amplitude increases 3 to 8 mm, and the breathing period 2 to 6 s. Differences in the contoured treatment volumes were less than 10% between consecutive scans. Patient positioning remained stable, with a small inter-scan difference of 1.1 (0.6-1.4) mm. Conclusion: Decreasing the inter-scan breathing amplitude decreases the tumor motion reciprocally. When the breathing amplitude decreases, the breathing period increases at inter- and intra-scan, especially during irregular breathing. Coaching improves respiration, keeping the initial shape of the breathing amplitude. Contoured treatment volumes and patient positioning were reproducible through successive scans.
期刊介绍:
Polish Journal of Medical Physics and Engineering (PJMPE) (Online ISSN: 1898-0309; Print ISSN: 1425-4689) is an official publication of the Polish Society of Medical Physics. It is a peer-reviewed, open access scientific journal with no publication fees. The issues are published quarterly online. The Journal publishes original contribution in medical physics and biomedical engineering.