An energy, momentum, and angular momentum conserving scheme for a regularization model of incompressible flow

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Sean Ingimarson
{"title":"An energy, momentum, and angular momentum conserving scheme for a regularization model of incompressible flow","authors":"Sean Ingimarson","doi":"10.1515/jnma-2020-0080","DOIUrl":null,"url":null,"abstract":"Abstract We introduce a new regularization model for incompressible fluid flow, which is a regularization of the EMAC (energy, momentum, and angular momentum conserving) formulation of the Navier–Stokes equations (NSE) that we call EMAC-Reg. The EMAC formulation has proved to be a useful formulation because it conserves energy, momentum, and angular momentum even when the divergence constraint is only weakly enforced. However, it is still a NSE formulation and so cannot resolve higher Reynolds number flows without very fine meshes. By carefully introducing regularization into the EMAC formulation, we create a model more suitable for coarser mesh computations but that still conserves the same quantities as EMAC, i.e., energy, momentum, and angular momentum. We show that EMAC-Reg, when semi-discretized with a finite element spatial discretization is well-posed and optimally accurate. Numerical results are provided that show EMAC-Reg is a robust coarse mesh model.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2020-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jnma-2020-0080","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 3

Abstract

Abstract We introduce a new regularization model for incompressible fluid flow, which is a regularization of the EMAC (energy, momentum, and angular momentum conserving) formulation of the Navier–Stokes equations (NSE) that we call EMAC-Reg. The EMAC formulation has proved to be a useful formulation because it conserves energy, momentum, and angular momentum even when the divergence constraint is only weakly enforced. However, it is still a NSE formulation and so cannot resolve higher Reynolds number flows without very fine meshes. By carefully introducing regularization into the EMAC formulation, we create a model more suitable for coarser mesh computations but that still conserves the same quantities as EMAC, i.e., energy, momentum, and angular momentum. We show that EMAC-Reg, when semi-discretized with a finite element spatial discretization is well-posed and optimally accurate. Numerical results are provided that show EMAC-Reg is a robust coarse mesh model.
不可压缩流正则化模型的能量、动量和角动量守恒方案
摘要本文引入了一种新的不可压缩流体流动正则化模型,它是Navier-Stokes方程(NSE)的EMAC(能量、动量和角动量守恒)公式的正则化,我们称之为EMAC- reg。EMAC公式已被证明是一个有用的公式,因为即使散度约束只是弱执行,它也能保存能量、动量和角动量。然而,它仍然是一个NSE公式,因此如果没有非常精细的网格,就无法解决更高雷诺数的流动。通过仔细地将正则化引入EMAC公式,我们创建了一个更适合于粗网格计算的模型,但仍然保留了与EMAC相同的量,即能量,动量和角动量。我们证明了EMAC-Reg在用有限元空间离散化半离散时是适定的和最优精度的。数值结果表明,EMAC-Reg是一种鲁棒的粗网格模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信