Interaction-Assisted Reversal of Thermopower with Ultracold Atoms

S. Häusler, P. Fabritius, Jeffrey Mohan, M. Lebrat, L. Corman, T. Esslinger
{"title":"Interaction-Assisted Reversal of Thermopower with Ultracold Atoms","authors":"S. Häusler, P. Fabritius, Jeffrey Mohan, M. Lebrat, L. Corman, T. Esslinger","doi":"10.1103/PhysRevX.11.021034","DOIUrl":null,"url":null,"abstract":"We study thermoelectric currents of neutral, fermionic atoms flowing through a mesoscopic channel connecting a hot and a cold reservoir across the superfluid transition. The thermoelectric response results from a competition between density-driven diffusion from the cold to the hot reservoir and the channel favoring transport of energetic particles from hot to cold. We control the relative strength of both contributions to the thermoelectric response using an external optical potential in both non-interacting and strongly-interacting systems. Without interactions, the magnitude of the particle current can be tuned over a broad range but is restricted to flow from hot to cold in our parameter regime. Strikingly, strong interparticle interactions additionally reverse the direction of the current. We quantitatively model ab initio the non-interacting observations and qualitatively explain the interaction-assisted reversal by the reduction of entropy transport due to pairing correlations. Our work paves the way to studying the coupling of spin and heat in strongly correlated matter using spin-dependent optical techniques with cold atoms.","PeriodicalId":8838,"journal":{"name":"arXiv: Quantum Gases","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Quantum Gases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PhysRevX.11.021034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

We study thermoelectric currents of neutral, fermionic atoms flowing through a mesoscopic channel connecting a hot and a cold reservoir across the superfluid transition. The thermoelectric response results from a competition between density-driven diffusion from the cold to the hot reservoir and the channel favoring transport of energetic particles from hot to cold. We control the relative strength of both contributions to the thermoelectric response using an external optical potential in both non-interacting and strongly-interacting systems. Without interactions, the magnitude of the particle current can be tuned over a broad range but is restricted to flow from hot to cold in our parameter regime. Strikingly, strong interparticle interactions additionally reverse the direction of the current. We quantitatively model ab initio the non-interacting observations and qualitatively explain the interaction-assisted reversal by the reduction of entropy transport due to pairing correlations. Our work paves the way to studying the coupling of spin and heat in strongly correlated matter using spin-dependent optical techniques with cold atoms.
超冷原子热能相互作用辅助逆转
我们研究了中性费米子原子在超流体跃迁中通过连接热储层和冷储层的介观通道流动的热电电流。热电响应是由密度驱动的从冷区向热区扩散和有利于高能粒子从热区向冷区输运的通道之间的竞争造成的。我们在非相互作用和强相互作用系统中使用外部光势来控制热电响应的两种贡献的相对强度。在没有相互作用的情况下,粒子电流的大小可以在很宽的范围内调整,但在我们的参数范围内仅限于从热到冷的流动。引人注目的是,强烈的粒子间相互作用还会逆转电流的方向。我们定量地从头开始模拟非相互作用的观测,并定性地解释了由于配对相关而减少熵输运的相互作用辅助反转。我们的工作为利用自旋依赖光学技术与冷原子研究强相关物质中自旋和热的耦合铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信