Growth of analytic functions in an ultrametric open disk and branched values

Pub Date : 2021-12-01 DOI:10.36045/j.bbms.200707
K. Boussaf, A. Escassut
{"title":"Growth of analytic functions in an ultrametric open disk and branched values","authors":"K. Boussaf, A. Escassut","doi":"10.36045/j.bbms.200707","DOIUrl":null,"url":null,"abstract":"Let D be the open unit disk |x| < R of a complete ultrametric algebraically closed field IK. We define the growth order ρ(f), the growth type σ(f) and the cotype ψ(f) of an analytic function in D and we show that, denoting by q(f, r) the number of zeros of f in the disk |x| ≤ r and putting |f |(r) = sup|x|≤r |f(x)|, the infimum θ(f) of the s such that lim r→R− q(f, r)(R− r) = 0 satisfies θ(f) − 1 ≤ ρ(f) ≤ θ(f) and the infimum of the s such that lim r→R− log(|f |(r))(R− r) = 0 is equal to ρ(f). Moreover, if 0 < ρ(f) < +∞ and 0 < ψ(f) < +∞, then θ(f) = ρ(f) and σ(f) = 0. In residue characteristic zero, then ρ(f ′) = ρ(f), σ(f ′) = σ(f), ψ(f ′) = ψ(f). Suppose IK has characteristic zero. Consider two unbounded analytic functions f, g in D. If ρ(f) 6= ρ(g), then f g has at most two perfectly branched values and if ρ(f) = ρ(g) but σ(f) 6= σ(g), then f g has at most three perfectly branched values; moreover, if 2σ(g) < σ(f), then f g has at most two perfectly branched values. Subject Classification: 12J25; 30D35; 30G06","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.36045/j.bbms.200707","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let D be the open unit disk |x| < R of a complete ultrametric algebraically closed field IK. We define the growth order ρ(f), the growth type σ(f) and the cotype ψ(f) of an analytic function in D and we show that, denoting by q(f, r) the number of zeros of f in the disk |x| ≤ r and putting |f |(r) = sup|x|≤r |f(x)|, the infimum θ(f) of the s such that lim r→R− q(f, r)(R− r) = 0 satisfies θ(f) − 1 ≤ ρ(f) ≤ θ(f) and the infimum of the s such that lim r→R− log(|f |(r))(R− r) = 0 is equal to ρ(f). Moreover, if 0 < ρ(f) < +∞ and 0 < ψ(f) < +∞, then θ(f) = ρ(f) and σ(f) = 0. In residue characteristic zero, then ρ(f ′) = ρ(f), σ(f ′) = σ(f), ψ(f ′) = ψ(f). Suppose IK has characteristic zero. Consider two unbounded analytic functions f, g in D. If ρ(f) 6= ρ(g), then f g has at most two perfectly branched values and if ρ(f) = ρ(g) but σ(f) 6= σ(g), then f g has at most three perfectly branched values; moreover, if 2σ(g) < σ(f), then f g has at most two perfectly branched values. Subject Classification: 12J25; 30D35; 30G06
分享
查看原文
超尺度开盘上解析函数的生长及其分支值
设D为完全超度量代数闭场IK的开单位盘|x| < R。我们定义订单增长ρ(f),增长类型σ(f)和共型ψ(f)解析函数的D,我们表明,表示通过q (f, r)的数量为零的f x磁盘| |≤r和f将| | (r) =一口| x |≤r f (x) | |的下确界θ(f)的年代,lim→r−q (f, r)(−r) = 0满足θ(f)−1≤ρ(f)≤θ(f)和下确界的年代,lim→r−日志(f | | (r))(−r) = 0 =ρ(f)。此外,如果0 <ρ(f) < +∞和0 <ψ(f) < +∞,然后θ(f) =ρ(f)和σ(f) = 0。在零残留特点,然后ρ(f ') =ρ(f),σ(f ') =σ(f),ψ(f ') =ψ(f)。假设IK的特征为零。考虑两个无界解析函数f, g在d中,如果ρ(f) 6= ρ(g),则f至多有两个完美分支值,如果ρ(f) = ρ(g)但σ(f) 6= σ(g),则f至多有三个完美分支值;如果2σ(g) < σ(f),则g最多有两个完全分支值。学科分类:12J25;30 d35;30 g06
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信