Personalised PageRank for making recommendations in digital cultural heritage collections

Arantxa Otegi, Eneko Agirre, Paul D. Clough
{"title":"Personalised PageRank for making recommendations in digital cultural heritage collections","authors":"Arantxa Otegi, Eneko Agirre, Paul D. Clough","doi":"10.1109/JCDL.2014.6970149","DOIUrl":null,"url":null,"abstract":"In this paper we describe the use of Personalised PageRank (PPR) to generate recommendations from a large collection of cultural heritage items. Various methods for computing item-to-item similarities are investigated, together with representing the collection as a network over which random walks can be taken. The network can represent similarity between item metadata, item co-occurrences in search logs, and the similarity of items based on linking them to Wikipedia articles and categories. To evaluate the use of PPR, search logs from Europeana are used to simulate user interactions. PPR on each information source is compared to a standard retrieval-based baseline, resulting in higher performance.","PeriodicalId":92278,"journal":{"name":"Proceedings of the ... ACM/IEEE Joint Conference on Digital Libraries. ACM/IEEE Joint Conference on Digital Libraries","volume":"30 1","pages":"49-52"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... ACM/IEEE Joint Conference on Digital Libraries. ACM/IEEE Joint Conference on Digital Libraries","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/JCDL.2014.6970149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In this paper we describe the use of Personalised PageRank (PPR) to generate recommendations from a large collection of cultural heritage items. Various methods for computing item-to-item similarities are investigated, together with representing the collection as a network over which random walks can be taken. The network can represent similarity between item metadata, item co-occurrences in search logs, and the similarity of items based on linking them to Wikipedia articles and categories. To evaluate the use of PPR, search logs from Europeana are used to simulate user interactions. PPR on each information source is compared to a standard retrieval-based baseline, resulting in higher performance.
个性化网页排名,为数字文化遗产收藏提供建议
在本文中,我们描述了使用Personalised PageRank (PPR)从大量的文化遗产项目中生成推荐。研究了计算物品到物品相似性的各种方法,以及将集合表示为可以采取随机漫步的网络。该网络可以表示项目元数据之间的相似性,搜索日志中的项目共同出现,以及基于链接到维基百科文章和类别的项目的相似性。为了评估PPR的使用,我们使用来自Europeana的搜索日志来模拟用户交互。将每个信息源上的PPR与基于检索的标准基线进行比较,从而获得更高的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信