MCMC for non-Linear State Space Models Using Ensembles of Latent Sequences

Alexander Y. Shestopaloff, Radford M. Neal
{"title":"MCMC for non-Linear State Space Models Using Ensembles of Latent Sequences","authors":"Alexander Y. Shestopaloff, Radford M. Neal","doi":"10.14288/1.0043899","DOIUrl":null,"url":null,"abstract":"inference problem that has no straightforward solution. We take a Bayesian approach to the inference of unknown parameters of a non-linear state model; this, in turn, requires the availability of ecient Markov Chain Monte Carlo (MCMC) sampling methods for the latent (hidden) variables and model parameters. Using the ensemble technique of Neal (2010) and the embedded HMM technique of Neal (2003), we introduce a new Markov Chain Monte Carlo method for non-linear state space models. The key idea is to perform parameter updates conditional on an enormously large ensemble of latent sequences, as opposed to a single sequence, as with existing methods. We look at the performance of this ensemble method when doing Bayesian inference in the Ricker model of population dynamics. We show that for this problem, the ensemble method is vastly more ecient than a simple Metropolis method, as well as 1 .9 to 12.0 times more ecient than a single-sequence embedded HMM method, when all methods are tuned appropriately. We also introduce a way of speeding up the ensemble method by performing partial backward passes to discard poor proposals at low computational cost, resulting in a final eciency","PeriodicalId":8446,"journal":{"name":"arXiv: Computation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14288/1.0043899","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

inference problem that has no straightforward solution. We take a Bayesian approach to the inference of unknown parameters of a non-linear state model; this, in turn, requires the availability of ecient Markov Chain Monte Carlo (MCMC) sampling methods for the latent (hidden) variables and model parameters. Using the ensemble technique of Neal (2010) and the embedded HMM technique of Neal (2003), we introduce a new Markov Chain Monte Carlo method for non-linear state space models. The key idea is to perform parameter updates conditional on an enormously large ensemble of latent sequences, as opposed to a single sequence, as with existing methods. We look at the performance of this ensemble method when doing Bayesian inference in the Ricker model of population dynamics. We show that for this problem, the ensemble method is vastly more ecient than a simple Metropolis method, as well as 1 .9 to 12.0 times more ecient than a single-sequence embedded HMM method, when all methods are tuned appropriately. We also introduce a way of speeding up the ensemble method by performing partial backward passes to discard poor proposals at low computational cost, resulting in a final eciency
基于隐序列集成的非线性状态空间模型的MCMC
没有直接解决方案的推理问题。我们采用贝叶斯方法对非线性状态模型的未知参数进行推理;这反过来又要求对潜在(隐藏)变量和模型参数使用有效的马尔可夫链蒙特卡罗(MCMC)采样方法。利用Neal(2010)的集成技术和Neal(2003)的嵌入HMM技术,我们引入了一种新的非线性状态空间模型的马尔可夫链蒙特卡罗方法。关键思想是执行参数更新的条件是一个巨大的潜在序列的集合,而不是一个单一的序列,与现有的方法。在种群动态的Ricker模型中进行贝叶斯推理时,我们观察了这种集成方法的性能。我们表明,对于这个问题,当所有方法都适当调优时,集成方法比简单的Metropolis方法效率高得多,比单序列嵌入HMM方法效率高1.9到12.0倍。我们还介绍了一种通过执行部分反向传递来加速集成方法的方法,以低计算成本丢弃不良建议,从而提高最终效率
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信