K. S. Babulal, A. Das, Pushpendra Kumar, D. Rajput, Afroj Alam, Ahmed J. Obaid
{"title":"Real-Time Surveillance System for Detection of Social Distancing","authors":"K. S. Babulal, A. Das, Pushpendra Kumar, D. Rajput, Afroj Alam, Ahmed J. Obaid","doi":"10.4018/ijehmc.309930","DOIUrl":null,"url":null,"abstract":"As the corona virus can mutate and due to other scientific factor associated to it, experts believe that COVID-19 will remain with us for decades. Therefore, one has to keep social distancing measures. Accepting the pandemic situation, the paper presents a mechanism for detecting violations of social distancing using deep learning to estimate the distance between individuals to diminish the influence of COVID-19. The focus of this paper is to understand the effect of social distancing on the spread of COVID-19 by using YOLOv3 and Faster-RCNN and proposes IFRCNN (improved faster region – convolution neural network). The proposed method IFRCNN is checked on a live streaming video of pedestrians walking on the street. This paper keeps the live updates of the recorded video along with social distancing violation records on a location, so how many people in a location are maintaining social distancing. Updates will be stored in a cloud-based storage system and any organization or firm can get live updates of that location in their digital devices.","PeriodicalId":43154,"journal":{"name":"International Journal of E-Health and Medical Communications","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2022-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of E-Health and Medical Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijehmc.309930","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 4
Abstract
As the corona virus can mutate and due to other scientific factor associated to it, experts believe that COVID-19 will remain with us for decades. Therefore, one has to keep social distancing measures. Accepting the pandemic situation, the paper presents a mechanism for detecting violations of social distancing using deep learning to estimate the distance between individuals to diminish the influence of COVID-19. The focus of this paper is to understand the effect of social distancing on the spread of COVID-19 by using YOLOv3 and Faster-RCNN and proposes IFRCNN (improved faster region – convolution neural network). The proposed method IFRCNN is checked on a live streaming video of pedestrians walking on the street. This paper keeps the live updates of the recorded video along with social distancing violation records on a location, so how many people in a location are maintaining social distancing. Updates will be stored in a cloud-based storage system and any organization or firm can get live updates of that location in their digital devices.