Sung Kyeom Kim, 김 성겸, Jin Hyoung Lee, H. Lee, Sanggyu Lee, B. Mun, S. An, H. Lee, 이 진형, 이 희주, 이 상규, 문 보흠, 안 세웅, 이 희수
{"title":"Development of Prediction Growth and Yield Models by Growing Degree Days in Hot Pepper","authors":"Sung Kyeom Kim, 김 성겸, Jin Hyoung Lee, H. Lee, Sanggyu Lee, B. Mun, S. An, H. Lee, 이 진형, 이 희주, 이 상규, 문 보흠, 안 세웅, 이 희수","doi":"10.12791/KSBEC.2018.27.4.424","DOIUrl":null,"url":null,"abstract":"This study was carried out to estimate growth characteristics of hot pepper and to develop predicted models for the production yield based on the growth parameters and climatic elements. Sigmoid regressions for the prediction of growth parameters in terms of fresh and dry weight, plant height, and leaf area were designed with growing degree days (GDD). The biomass and leaf expansion of hot pepper plants were rapidly increased when 1,000 and 941 GDD. The relative growth rate (RGR) of hot pepper based on dry weight was formulated by Gaussian’s equation RGR (dry weight) = 0.0562 + 0.0004 × DAT − 0.00000557 × DAT and the yields of fresh and dry hot pepper at the 112 days after transplanting were estimated 1,387 and 291 kg/10a, respectively. Results indicated that the growth and yield of hot pepper were predicted by potential growth model under plastic tunnel cultivation. Thus, those models need to calibration and validation to estimate the efficacy of prediction yield in hot pepper using supplement a predicting model, which was based on the parameters and climatic elements. Additional key words : Capsicum annuum L., growing degree days, growth, prediction yield, relative growth rate","PeriodicalId":20654,"journal":{"name":"Protected horticulture and Plant Factory","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protected horticulture and Plant Factory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12791/KSBEC.2018.27.4.424","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
This study was carried out to estimate growth characteristics of hot pepper and to develop predicted models for the production yield based on the growth parameters and climatic elements. Sigmoid regressions for the prediction of growth parameters in terms of fresh and dry weight, plant height, and leaf area were designed with growing degree days (GDD). The biomass and leaf expansion of hot pepper plants were rapidly increased when 1,000 and 941 GDD. The relative growth rate (RGR) of hot pepper based on dry weight was formulated by Gaussian’s equation RGR (dry weight) = 0.0562 + 0.0004 × DAT − 0.00000557 × DAT and the yields of fresh and dry hot pepper at the 112 days after transplanting were estimated 1,387 and 291 kg/10a, respectively. Results indicated that the growth and yield of hot pepper were predicted by potential growth model under plastic tunnel cultivation. Thus, those models need to calibration and validation to estimate the efficacy of prediction yield in hot pepper using supplement a predicting model, which was based on the parameters and climatic elements. Additional key words : Capsicum annuum L., growing degree days, growth, prediction yield, relative growth rate