{"title":"Navigating big data with high-throughput, energy-efficient data partitioning","authors":"Lisa Wu, R. J. Barker, Martha A. Kim, K. A. Ross","doi":"10.1145/2485922.2485944","DOIUrl":null,"url":null,"abstract":"The global pool of data is growing at 2.5 quintillion bytes per day, with 90% of it produced in the last two years alone [24]. There is no doubt the era of big data has arrived. This paper explores targeted deployment of hardware accelerators to improve the throughput and energy efficiency of large-scale data processing. In particular, data partitioning is a critical operation for manipulating large data sets. It is often the limiting factor in database performance and represents a significant fraction of the overall runtime of large data queries. To accelerate partitioning, this paper describes a hardware accelerator for range partitioning, or HARP, and a hardware-software data streaming framework. The streaming framework offers a seamless execution environment for streaming accelerators such as HARP. Together, HARP and the streaming framework provide an order of magnitude improvement in partitioning performance and energy. A detailed analysis of a 32nm physical design shows 7.8 times the throughput of a highly optimized and optimistic software implementation, while consuming just 6.9% of the area and 4.3% of the power of a single Xeon core in the same technology generation.","PeriodicalId":20555,"journal":{"name":"Proceedings of the 40th Annual International Symposium on Computer Architecture","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2013-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"103","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 40th Annual International Symposium on Computer Architecture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2485922.2485944","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 103
Abstract
The global pool of data is growing at 2.5 quintillion bytes per day, with 90% of it produced in the last two years alone [24]. There is no doubt the era of big data has arrived. This paper explores targeted deployment of hardware accelerators to improve the throughput and energy efficiency of large-scale data processing. In particular, data partitioning is a critical operation for manipulating large data sets. It is often the limiting factor in database performance and represents a significant fraction of the overall runtime of large data queries. To accelerate partitioning, this paper describes a hardware accelerator for range partitioning, or HARP, and a hardware-software data streaming framework. The streaming framework offers a seamless execution environment for streaming accelerators such as HARP. Together, HARP and the streaming framework provide an order of magnitude improvement in partitioning performance and energy. A detailed analysis of a 32nm physical design shows 7.8 times the throughput of a highly optimized and optimistic software implementation, while consuming just 6.9% of the area and 4.3% of the power of a single Xeon core in the same technology generation.