Slot Cars: 3D Modelling for Improved Visual Traffic Analytics

Eduardo R. Corral-Soto, J. Elder
{"title":"Slot Cars: 3D Modelling for Improved Visual Traffic Analytics","authors":"Eduardo R. Corral-Soto, J. Elder","doi":"10.1109/CVPRW.2017.123","DOIUrl":null,"url":null,"abstract":"A major challenge in visual highway traffic analytics is to disaggregate individual vehicles from clusters formed in dense traffic conditions. Here we introduce a data driven 3D generative reasoning method to tackle this segmentation problem. The method is comprised of offline (learning) and online (inference) stages. In the offline stage, we fit a mixture model for the prior distribution of vehicle dimensions to labelled data. Given camera intrinsic parameters and height, we use a parallelism method to estimate highway lane structure and camera tilt to project 3D models to the image. In the online stage, foreground vehicle cluster segments are extracted using motion and background subtraction. For each segment, we use a data-driven MCMC method to estimate the vehicles configuration and dimensions that provide the most likely account of the observed foreground pixels. We evaluate the method on two highway datasets and demonstrate a substantial improvement on the state of the art.","PeriodicalId":6668,"journal":{"name":"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","volume":"1 1","pages":"889-897"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2017.123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

A major challenge in visual highway traffic analytics is to disaggregate individual vehicles from clusters formed in dense traffic conditions. Here we introduce a data driven 3D generative reasoning method to tackle this segmentation problem. The method is comprised of offline (learning) and online (inference) stages. In the offline stage, we fit a mixture model for the prior distribution of vehicle dimensions to labelled data. Given camera intrinsic parameters and height, we use a parallelism method to estimate highway lane structure and camera tilt to project 3D models to the image. In the online stage, foreground vehicle cluster segments are extracted using motion and background subtraction. For each segment, we use a data-driven MCMC method to estimate the vehicles configuration and dimensions that provide the most likely account of the observed foreground pixels. We evaluate the method on two highway datasets and demonstrate a substantial improvement on the state of the art.
槽车:改进视觉交通分析的3D建模
视觉公路交通分析的一个主要挑战是如何从密集交通条件下形成的集群中分解出单个车辆。在这里,我们引入了一种数据驱动的三维生成推理方法来解决这个分割问题。该方法由离线(学习)和在线(推理)两个阶段组成。在离线阶段,我们拟合了车辆尺寸先验分布的混合模型。给定相机的固有参数和高度,我们使用平行度方法来估计高速公路车道结构和相机倾斜,以将三维模型投影到图像中。在在线阶段,使用运动和背景减法提取前景车辆簇段。对于每个片段,我们使用数据驱动的MCMC方法来估计车辆的配置和尺寸,这些配置和尺寸提供了最可能的观测前景像素。我们在两个高速公路数据集上评估了该方法,并展示了对最新技术的实质性改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信