Ahmed Elgohary, Matthias Boehm, P. Haas, Frederick Reiss, B. Reinwald
{"title":"Scaling Machine Learning via Compressed Linear Algebra","authors":"Ahmed Elgohary, Matthias Boehm, P. Haas, Frederick Reiss, B. Reinwald","doi":"10.1145/3093754.3093765","DOIUrl":null,"url":null,"abstract":"Large-scale machine learning (ML) algorithms are often iterative, using repeated read-only data access and I/Obound matrix-vector multiplications to converge to an optimal model. It is crucial for performance to fit the data into single-node or distributed main memory and enable very fast matrix-vector operations on in-memory data. Generalpurpose, heavy- and lightweight compression techniques struggle to achieve both good compression ratios and fast decompression speed to enable block-wise uncompressed operations. Compressed linear algebra (CLA) avoids these problems by applying lightweight lossless database compression techniques to matrices and then executing linear algebra operations such as matrix-vector multiplication directly on the compressed representations. The key ingredients are effective column compression schemes, cache-conscious operations, and an efficient sampling-based compression algorithm. Experiments on an initial implementation in SystemML show in-memory operations performance close to the uncompressed case and good compression ratios.We thereby obtain significant end-to-end performance improvements up to 26x or reduced memory requirements.","PeriodicalId":21740,"journal":{"name":"SIGMOD Rec.","volume":"1 1","pages":"42-49"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGMOD Rec.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3093754.3093765","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
Large-scale machine learning (ML) algorithms are often iterative, using repeated read-only data access and I/Obound matrix-vector multiplications to converge to an optimal model. It is crucial for performance to fit the data into single-node or distributed main memory and enable very fast matrix-vector operations on in-memory data. Generalpurpose, heavy- and lightweight compression techniques struggle to achieve both good compression ratios and fast decompression speed to enable block-wise uncompressed operations. Compressed linear algebra (CLA) avoids these problems by applying lightweight lossless database compression techniques to matrices and then executing linear algebra operations such as matrix-vector multiplication directly on the compressed representations. The key ingredients are effective column compression schemes, cache-conscious operations, and an efficient sampling-based compression algorithm. Experiments on an initial implementation in SystemML show in-memory operations performance close to the uncompressed case and good compression ratios.We thereby obtain significant end-to-end performance improvements up to 26x or reduced memory requirements.