M. Zhang, Yang Guo, Na Lei, Zhou Zhao, Jianfeng Wu, Xiaoyin Xu, Yalin Wang, X. Gu
{"title":"Cortical Surface Shape Analysis Based on Alexandrov Polyhedra","authors":"M. Zhang, Yang Guo, Na Lei, Zhou Zhao, Jianfeng Wu, Xiaoyin Xu, Yalin Wang, X. Gu","doi":"10.1109/ICCV48922.2021.01398","DOIUrl":null,"url":null,"abstract":"Shape analysis has been playing an important role in early diagnosis and prognosis of neurodegenerative diseases such as Alzheimer’s diseases (AD). However, obtaining effective shape representations remains challenging. This paper proposes to use the Alexandrov polyhedra as surface-based shape signatures for cortical morphometry analysis. Given a closed genus-0 surface, its Alexandrov polyhedron is a convex representation that encodes its intrinsic geometry information. We propose to compute the polyhedra via a novel spherical optimal transport (OT) computation. In our experiments, we observe that the Alexandrov polyhedra of cortical surfaces between pathology-confirmed AD and cognitively unimpaired individuals are significantly different. Moreover, we propose a visualization method by comparing local geometry differences across cortical surfaces. We show that the proposed method is effective in pinpointing regional cortical structural changes impacted by AD.","PeriodicalId":6820,"journal":{"name":"2021 IEEE/CVF International Conference on Computer Vision (ICCV)","volume":"7 1","pages":"14224-14232"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/CVF International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV48922.2021.01398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Shape analysis has been playing an important role in early diagnosis and prognosis of neurodegenerative diseases such as Alzheimer’s diseases (AD). However, obtaining effective shape representations remains challenging. This paper proposes to use the Alexandrov polyhedra as surface-based shape signatures for cortical morphometry analysis. Given a closed genus-0 surface, its Alexandrov polyhedron is a convex representation that encodes its intrinsic geometry information. We propose to compute the polyhedra via a novel spherical optimal transport (OT) computation. In our experiments, we observe that the Alexandrov polyhedra of cortical surfaces between pathology-confirmed AD and cognitively unimpaired individuals are significantly different. Moreover, we propose a visualization method by comparing local geometry differences across cortical surfaces. We show that the proposed method is effective in pinpointing regional cortical structural changes impacted by AD.