A novel face recognition technique using Convolutional Neural Network, HOG, and histogram of LBP features

S. Yallamandaiah, N. Purnachand
{"title":"A novel face recognition technique using Convolutional Neural Network, HOG, and histogram of LBP features","authors":"S. Yallamandaiah, N. Purnachand","doi":"10.1109/AISP53593.2022.9760679","DOIUrl":null,"url":null,"abstract":"Face recognition is a process of verifying an individual using facial images and it is widely employed in identifying people on social media platforms, validating identity at ATMs, finding missing persons, controlling access to sensitive areas, finding lost pets, etc. Face recognition is still a trending research area because of various challenges like illumination variations, different poses, and expressions of the person. Here, a novel methodology is introduced for face recognition using Histogram of Oriented Gradients (HOG), histogram of Local Binary Patterns (LBP), and Convolutional Neural Network (CNN). The features from HOG, histogram of LBP, and deep features from the proposed CNN are linearly concatenated to produce the feature space and then classified by Support Vector Machine. The face databases ORL, Extended Yale B, and CMUPIE are used for experimental work and attained a recognition rate of 98.48%, 97.33%, and 97.28% respectively.","PeriodicalId":6793,"journal":{"name":"2022 2nd International Conference on Artificial Intelligence and Signal Processing (AISP)","volume":"19 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 2nd International Conference on Artificial Intelligence and Signal Processing (AISP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AISP53593.2022.9760679","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Face recognition is a process of verifying an individual using facial images and it is widely employed in identifying people on social media platforms, validating identity at ATMs, finding missing persons, controlling access to sensitive areas, finding lost pets, etc. Face recognition is still a trending research area because of various challenges like illumination variations, different poses, and expressions of the person. Here, a novel methodology is introduced for face recognition using Histogram of Oriented Gradients (HOG), histogram of Local Binary Patterns (LBP), and Convolutional Neural Network (CNN). The features from HOG, histogram of LBP, and deep features from the proposed CNN are linearly concatenated to produce the feature space and then classified by Support Vector Machine. The face databases ORL, Extended Yale B, and CMUPIE are used for experimental work and attained a recognition rate of 98.48%, 97.33%, and 97.28% respectively.
一种利用卷积神经网络、HOG和LBP特征直方图的人脸识别新技术
人脸识别是一个使用面部图像验证个人身份的过程,它被广泛应用于社交媒体平台上的身份识别、自动柜员机的身份验证、寻找失踪人员、控制进入敏感区域、寻找丢失的宠物等。人脸识别仍然是一个趋势研究领域,因为各种各样的挑战,如照明变化,不同的姿势,和人的表情。本文介绍了一种利用梯度直方图(HOG)、局部二值模式直方图(LBP)和卷积神经网络(CNN)进行人脸识别的新方法。将HOG的特征、LBP的直方图和CNN的深度特征进行线性拼接,形成特征空间,然后用支持向量机进行分类。使用人脸数据库ORL、Extended Yale B和cmpie进行实验,识别率分别为98.48%、97.33%和97.28%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信