Modeling of active and passive nonlinear metamaterials

Patrick L. Colestock , Matthew T. Reiten , John F. O’Hara
{"title":"Modeling of active and passive nonlinear metamaterials","authors":"Patrick L. Colestock ,&nbsp;Matthew T. Reiten ,&nbsp;John F. O’Hara","doi":"10.1016/j.metmat.2012.09.002","DOIUrl":null,"url":null,"abstract":"<div><p>We develop general results for nonlinear metamaterials based on simple circuit models that reflect the elementary nonlinear behavior of the medium. In particular, we consider both active and passive nonlinearities which can lead to gain, harmonic generation and a variety of nonlinear waves depending on circuit parameters and signal amplitude. We show that the medium can exhibit a phase transition to a synchronized state and derive conditions for the transformation based on a widely used multiple time scale approach that leads to the well-known Complex Ginzburg–Landau equation. Further, we examine the variety of nonlinear waves that can exist in such systems, and we present numerical results for both active and passive metamaterial cases.</p></div>","PeriodicalId":100920,"journal":{"name":"Metamaterials","volume":"6 1","pages":"Pages 8-26"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.metmat.2012.09.002","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metamaterials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1873198812000059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We develop general results for nonlinear metamaterials based on simple circuit models that reflect the elementary nonlinear behavior of the medium. In particular, we consider both active and passive nonlinearities which can lead to gain, harmonic generation and a variety of nonlinear waves depending on circuit parameters and signal amplitude. We show that the medium can exhibit a phase transition to a synchronized state and derive conditions for the transformation based on a widely used multiple time scale approach that leads to the well-known Complex Ginzburg–Landau equation. Further, we examine the variety of nonlinear waves that can exist in such systems, and we present numerical results for both active and passive metamaterial cases.

有源和无源非线性超材料的建模
基于反映介质基本非线性行为的简单电路模型,我们发展了非线性超材料的一般结果。特别是,我们考虑了有源和无源非线性,它们会导致增益,谐波产生和各种非线性波,这取决于电路参数和信号幅度。我们证明了介质可以表现出相变到同步状态,并基于广泛使用的多时间尺度方法推导了相变的条件,该方法导致了著名的复金兹堡-朗道方程。此外,我们研究了这种系统中可能存在的各种非线性波,并给出了有源和无源超材料情况下的数值结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信