2D RRAM and Verilog-A model for Neuromorphic Computing

Yifu Huang, Xiaohan Wu, Yuqian Gu, Ruijing Ge, Jiahan Zhang, Yao‐Feng Chang, D. Akinwande, Jack C. Lee
{"title":"2D RRAM and Verilog-A model for Neuromorphic Computing","authors":"Yifu Huang, Xiaohan Wu, Yuqian Gu, Ruijing Ge, Jiahan Zhang, Yao‐Feng Chang, D. Akinwande, Jack C. Lee","doi":"10.1109/NMDC50713.2021.9677559","DOIUrl":null,"url":null,"abstract":"Resistive random-access memory (RRAM) has become one of the most promising devices for emerging non-volatile memory and brain-inspired neuromorphic computing applications. As a two-dimensional material, monolayer rhenium diselenide (ReSe2) has been reported to exhibit non-volatile resistive switching (NVRS) phenomenon and applied in RRAM devices. In this work, a ReSe2-based RRAM device is proposed. Multi-step resistive switching behavior is observed under DC sweep. By applying proper pulse stimulus, it has been demonstrated that the proposed device exhibits long-term potentiation and depression (LTP/LTD), which is implemented in a Verilog-A model for the purpose of circuit-level simulation.","PeriodicalId":6742,"journal":{"name":"2021 IEEE 16th Nanotechnology Materials and Devices Conference (NMDC)","volume":"26 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 16th Nanotechnology Materials and Devices Conference (NMDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NMDC50713.2021.9677559","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Resistive random-access memory (RRAM) has become one of the most promising devices for emerging non-volatile memory and brain-inspired neuromorphic computing applications. As a two-dimensional material, monolayer rhenium diselenide (ReSe2) has been reported to exhibit non-volatile resistive switching (NVRS) phenomenon and applied in RRAM devices. In this work, a ReSe2-based RRAM device is proposed. Multi-step resistive switching behavior is observed under DC sweep. By applying proper pulse stimulus, it has been demonstrated that the proposed device exhibits long-term potentiation and depression (LTP/LTD), which is implemented in a Verilog-A model for the purpose of circuit-level simulation.
神经形态计算的二维RRAM和Verilog-A模型
电阻式随机存取存储器(RRAM)已成为新兴的非易失性存储器和脑启发神经形态计算应用中最有前途的器件之一。作为一种二维材料,单层二硒化铼(ReSe2)已被报道表现出非易失性电阻开关(NVRS)现象,并应用于RRAM器件。在这项工作中,提出了一个基于rese2的RRAM器件。在直流扫频下观察到多阶电阻开关行为。通过施加适当的脉冲刺激,已证明所提出的器件具有长期增强和抑制(LTP/LTD),并在Verilog-A模型中实现,用于电路级仿真。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信