{"title":"Research on an Improved MB-LBP 3D Face Recognition Method","authors":"Liangliang Shi, Xia Wang, Yongliang Shen","doi":"10.17706/jsw.16.6.306-314","DOIUrl":null,"url":null,"abstract":"In order to improve the accuracy and speed of 3D face recognition, this paper proposes an improved MB-LBP 3D face recognition method. First, the MB-LBP algorithm is used to extract the features of 3D face depth image, then the average information entropy algorithm is used to extract the effective feature information of the image, and finallythe Support Vector Machine algorithm is used to identify the extracted effective information. The recognition rate on the Texas 3DFRD database is 96.88%, and the recognition time is 0.025s. The recognition rate in the self-made depth library is 96.36%, and the recognition time is 0.02s.It can be seen from the experimental results that the algorithm in this paper has better performance in terms of accuracy and speed.","PeriodicalId":11452,"journal":{"name":"e Informatica Softw. Eng. J.","volume":"9 1","pages":"306-314"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"e Informatica Softw. Eng. J.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17706/jsw.16.6.306-314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In order to improve the accuracy and speed of 3D face recognition, this paper proposes an improved MB-LBP 3D face recognition method. First, the MB-LBP algorithm is used to extract the features of 3D face depth image, then the average information entropy algorithm is used to extract the effective feature information of the image, and finallythe Support Vector Machine algorithm is used to identify the extracted effective information. The recognition rate on the Texas 3DFRD database is 96.88%, and the recognition time is 0.025s. The recognition rate in the self-made depth library is 96.36%, and the recognition time is 0.02s.It can be seen from the experimental results that the algorithm in this paper has better performance in terms of accuracy and speed.