{"title":"Optimization-Driven Controller Design for a High-Performance Electro-Hydrostatic Asymmetric Actuator Operating in All Quadrants","authors":"Kurram Butt, G. Costa, N. Sepehri","doi":"10.1115/1.4050722","DOIUrl":null,"url":null,"abstract":"\n This paper presents an optimization-driven controller design for smooth and accurate position control of a single-rod electrohydrostatic actuator. The design approach uses logically guided iterative runs of the electrohydrostatic actuator to determine the optimal gain and poles' locations of a low-bandwidth controller. The optimization algorithm used in the paper is the globalized bounded Nelder–Mead algorithm with deterministic restarts for improved globalization and lower numerical cost. The design also incorporates a prefilter to ensure minimum jerk in the system's step input response in the beginning and while approaching steady-state. The step response of the filter is a seventh-deg polynomial curve that ensures the minimum change in acceleration in both states. Experimental results reveal that the addition of the proposed prefilter reduces jerk in the system by up to 90%. Results also indicate that the controller performs very well in all quadrants with external load uncertainty of up to 367 kg and thus proves the effectiveness of the design approach.","PeriodicalId":54846,"journal":{"name":"Journal of Dynamic Systems Measurement and Control-Transactions of the Asme","volume":"31 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2021-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Dynamic Systems Measurement and Control-Transactions of the Asme","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1115/1.4050722","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 1
Abstract
This paper presents an optimization-driven controller design for smooth and accurate position control of a single-rod electrohydrostatic actuator. The design approach uses logically guided iterative runs of the electrohydrostatic actuator to determine the optimal gain and poles' locations of a low-bandwidth controller. The optimization algorithm used in the paper is the globalized bounded Nelder–Mead algorithm with deterministic restarts for improved globalization and lower numerical cost. The design also incorporates a prefilter to ensure minimum jerk in the system's step input response in the beginning and while approaching steady-state. The step response of the filter is a seventh-deg polynomial curve that ensures the minimum change in acceleration in both states. Experimental results reveal that the addition of the proposed prefilter reduces jerk in the system by up to 90%. Results also indicate that the controller performs very well in all quadrants with external load uncertainty of up to 367 kg and thus proves the effectiveness of the design approach.
期刊介绍:
The Journal of Dynamic Systems, Measurement, and Control publishes theoretical and applied original papers in the traditional areas implied by its name, as well as papers in interdisciplinary areas. Theoretical papers should present new theoretical developments and knowledge for controls of dynamical systems together with clear engineering motivation for the new theory. New theory or results that are only of mathematical interest without a clear engineering motivation or have a cursory relevance only are discouraged. "Application" is understood to include modeling, simulation of realistic systems, and corroboration of theory with emphasis on demonstrated practicality.