Infinite probabilistic latent component analysis for audio source separation

Kazuyoshi Yoshii, Eita Nakamura, Katsutoshi Itoyama, Masataka Goto
{"title":"Infinite probabilistic latent component analysis for audio source separation","authors":"Kazuyoshi Yoshii, Eita Nakamura, Katsutoshi Itoyama, Masataka Goto","doi":"10.1109/MLSP.2017.8168189","DOIUrl":null,"url":null,"abstract":"This paper presents a statistical method of audio source separation based on a nonparametric Bayesian extension of probabilistic latent component analysis (PLCA). A major approach to audio source separation is to use nonnegative matrix factorization (NMF) that approximates the magnitude spectrum of a mixture signal at each frame as the weighted sum of fewer source spectra. Another approach is to use PLCA that regards the magnitude spectrogram as a two-dimensional histogram of “sound quanta” and classifies each quantum into one of sources. While NMF has a physically-natural interpretation, PLCA has been used successfully for music signal analysis. To enable PLCA to estimate the number of sources, we propose Dirichlet process PLCA (DP-PLCA) and derive two kinds of learning methods based on variational Bayes and collapsed Gibbs sampling. Unlike existing learning methods for nonparametric Bayesian NMF based on the beta or gamma processes (BP-NMF and GaP-NMF), our sampling method can efficiently search for the optimal number of sources without truncating the number of sources to be considered. Experimental results showed that DP-PLCA is superior to GaP-NMF in terms of source number estimation.","PeriodicalId":6542,"journal":{"name":"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)","volume":"15 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MLSP.2017.8168189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents a statistical method of audio source separation based on a nonparametric Bayesian extension of probabilistic latent component analysis (PLCA). A major approach to audio source separation is to use nonnegative matrix factorization (NMF) that approximates the magnitude spectrum of a mixture signal at each frame as the weighted sum of fewer source spectra. Another approach is to use PLCA that regards the magnitude spectrogram as a two-dimensional histogram of “sound quanta” and classifies each quantum into one of sources. While NMF has a physically-natural interpretation, PLCA has been used successfully for music signal analysis. To enable PLCA to estimate the number of sources, we propose Dirichlet process PLCA (DP-PLCA) and derive two kinds of learning methods based on variational Bayes and collapsed Gibbs sampling. Unlike existing learning methods for nonparametric Bayesian NMF based on the beta or gamma processes (BP-NMF and GaP-NMF), our sampling method can efficiently search for the optimal number of sources without truncating the number of sources to be considered. Experimental results showed that DP-PLCA is superior to GaP-NMF in terms of source number estimation.
音频源分离的无限概率潜在分量分析
提出了一种基于概率潜分量分析的非参数贝叶斯扩展的音频源分离统计方法。音频源分离的主要方法是使用非负矩阵分解(NMF),该方法将混合信号在每帧处的幅度谱近似为较少源谱的加权和。另一种方法是使用PLCA,它将幅度谱图视为“声音量子”的二维直方图,并将每个量子分类为一个源。虽然NMF具有物理-自然解释,但PLCA已成功用于音乐信号分析。为了使PLCA能够估计源的数量,我们提出了Dirichlet过程PLCA (DP-PLCA),并推导了两种基于变分贝叶斯和崩溃吉布斯抽样的学习方法。与现有的基于beta或gamma过程(BP-NMF和GaP-NMF)的非参数贝叶斯NMF学习方法不同,我们的采样方法可以有效地搜索最优的源数量,而不会截断要考虑的源数量。实验结果表明,DP-PLCA算法在源数估计方面优于GaP-NMF算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信