{"title":"Invariant subspaces for Fréchet spaces without continuous norm","authors":"Q. Menet","doi":"10.1090/proc/15418","DOIUrl":null,"url":null,"abstract":"Let $(X,(p_j))$ be a Frechet space with a Schauder basis and without continuous norm, where $(p_j)$ is an increasing sequence of seminorms inducing the topology of $X$. We show that $X$ satisfies the Invariant Subspace Property if and only if there exists $j_0\\ge 1$ such that $\\ker p_{j+1}$ is of finite codimension in $\\ker p_{j}$ for every $j\\ge j_0$.","PeriodicalId":8426,"journal":{"name":"arXiv: Functional Analysis","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Functional Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/proc/15418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Let $(X,(p_j))$ be a Frechet space with a Schauder basis and without continuous norm, where $(p_j)$ is an increasing sequence of seminorms inducing the topology of $X$. We show that $X$ satisfies the Invariant Subspace Property if and only if there exists $j_0\ge 1$ such that $\ker p_{j+1}$ is of finite codimension in $\ker p_{j}$ for every $j\ge j_0$.