Lagrangian cobordisms between enriched knot diagrams

Pub Date : 2021-12-18 DOI:10.4310/jsg.2023.v21.n1.a4
Ipsita Datta
{"title":"Lagrangian cobordisms between enriched knot diagrams","authors":"Ipsita Datta","doi":"10.4310/jsg.2023.v21.n1.a4","DOIUrl":null,"url":null,"abstract":"In this paper, we present new obstructions to the existence of Lagrangian cobordisms in $\\mathbb{R}^4$ that depend only on the enriched knot diagrams of the boundary knots or links, using holomorphic curve techniques. We define enriched knot diagrams for generic smooth links. The existence of Lagrangian cobordisms gives a well-defined transitive relation on equivalence classes of enriched knot diagrams that is a strict partial order when restricted to exact enriched knot diagrams To establish obstructions we study $1$-dimensional moduli spaces of holomorphic disks with corners that have boundary on Lagrangian tangles - an appropriate immersed Lagrangian closely related to embedded Lagrangian cobordisms. We adapt existing techniques to prove compactness and transversality, and compute dimensions of these moduli spaces. We produce obstructions as a consequence of characterizing all boundary points of such moduli spaces. We use these obstructions to recover and extend results about ``growing\"and ``shrinking\"Lagrangian slices. We hope that this investigation will open up new directions in studying Lagrangian surfaces in $\\mathbb{R}^4$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/jsg.2023.v21.n1.a4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we present new obstructions to the existence of Lagrangian cobordisms in $\mathbb{R}^4$ that depend only on the enriched knot diagrams of the boundary knots or links, using holomorphic curve techniques. We define enriched knot diagrams for generic smooth links. The existence of Lagrangian cobordisms gives a well-defined transitive relation on equivalence classes of enriched knot diagrams that is a strict partial order when restricted to exact enriched knot diagrams To establish obstructions we study $1$-dimensional moduli spaces of holomorphic disks with corners that have boundary on Lagrangian tangles - an appropriate immersed Lagrangian closely related to embedded Lagrangian cobordisms. We adapt existing techniques to prove compactness and transversality, and compute dimensions of these moduli spaces. We produce obstructions as a consequence of characterizing all boundary points of such moduli spaces. We use these obstructions to recover and extend results about ``growing"and ``shrinking"Lagrangian slices. We hope that this investigation will open up new directions in studying Lagrangian surfaces in $\mathbb{R}^4$.
分享
查看原文
富结图之间的拉格朗日坐标
本文利用全纯曲线技术,给出了在$\mathbb{R}^4$中仅依赖于边界结点或连杆的富结图的拉格朗日协律存在的新障碍。我们定义了一般光滑连杆的丰富结图。拉格朗日协数的存在性给出了富结图等价类上一个定义良好的传递关系,当约束于精确富结图时,该传递关系是严格偏序的。为了建立障碍物,我们研究了角在拉格朗日缠结上有边界的全纯盘的$1$维模空间——一个与嵌入拉格朗日协数密切相关的适当的浸没拉格朗日。我们利用现有的技术证明了模空间的紧性和横性,并计算了这些模空间的维数。通过刻画这些模空间的所有边界点,我们得到了障碍物。我们使用这些障碍来恢复和扩展关于拉格朗日切片“增长”和“收缩”的结果。我们希望这一研究将为$\mathbb{R}^4$中的拉格朗日曲面的研究开辟新的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信