Monadic second-order logic and hypergraph orientation

B. Courcelle
{"title":"Monadic second-order logic and hypergraph orientation","authors":"B. Courcelle","doi":"10.1109/LICS.1993.287589","DOIUrl":null,"url":null,"abstract":"It is proved that in every undirected graph or, more generally, in every undirected hypergraph of bounded rank, one can specify an orientation of the edges or hyperedges by monadic second-order formulas using quantifications on sets of edges or hyperedges. The proof uses an extension to hypergraphs of the classical notion of a depth-first search spanning tree. Applications are given to the partially open problem of characterizing the classes of graphs (or hypergraphs) having decidable monadic theories, with and without quantifications on sets of edges (or hyperedges).<<ETX>>","PeriodicalId":6322,"journal":{"name":"[1993] Proceedings Eighth Annual IEEE Symposium on Logic in Computer Science","volume":"21 1","pages":"179-190"},"PeriodicalIF":0.0000,"publicationDate":"1993-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1993] Proceedings Eighth Annual IEEE Symposium on Logic in Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LICS.1993.287589","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

It is proved that in every undirected graph or, more generally, in every undirected hypergraph of bounded rank, one can specify an orientation of the edges or hyperedges by monadic second-order formulas using quantifications on sets of edges or hyperedges. The proof uses an extension to hypergraphs of the classical notion of a depth-first search spanning tree. Applications are given to the partially open problem of characterizing the classes of graphs (or hypergraphs) having decidable monadic theories, with and without quantifications on sets of edges (or hyperedges).<>
一元二阶逻辑和超图取向
证明了在每一个无向图中,或者更一般地说,在每一个有界秩的无向超图中,利用边或超边集合上的量化,可以用一元二阶公式指定边或超边的方向。证明使用了对深度优先搜索生成树的经典概念的超图的扩展。给出了在边集(或超边)上有或没有量化的具有可判定一元理论的图(或超图)类的部分开放问题的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信