TAR Based Hotspot Prediction in Cloud Data Centres

IF 0.6 Q4 COMPUTER SCIENCE, THEORY & METHODS
A. Raveendran, E. Sherly
{"title":"TAR Based Hotspot Prediction in Cloud Data Centres","authors":"A. Raveendran, E. Sherly","doi":"10.4018/IJGHPC.2019070101","DOIUrl":null,"url":null,"abstract":"In this article, the authors studied hotspots in cloud data centers, which are caused due to a lack of resources to satisfy the peak immediate requests from clients. The nature of resource utilization in cloud data centers are totally dynamic in context and may lead to hotspots. Hotspots are unfavorable situations which cause SLA violations in some scenarios. Here they use trend aware regression (TAR) methods as a load prediction model and perform linear regression analysis to detect the formation of hotspots in physical servers of cloud data centers. This prediction model provides an alarm period for the cloud administrators either to provide enough resources to avoid hotspot situations or perform interference aware virtual machine migration to balance the load on servers. Here they analyzed the physical server resource utilization model in terms of CPU utilization, memory utilization and network bandwidth utilization. In the TAR model, the authors consider the degree of variation between the current points in the prediction window to forecast the future points. The TAR model provides accurate results in its predictions.","PeriodicalId":43565,"journal":{"name":"International Journal of Grid and High Performance Computing","volume":"16 1","pages":"1-22"},"PeriodicalIF":0.6000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Grid and High Performance Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJGHPC.2019070101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, the authors studied hotspots in cloud data centers, which are caused due to a lack of resources to satisfy the peak immediate requests from clients. The nature of resource utilization in cloud data centers are totally dynamic in context and may lead to hotspots. Hotspots are unfavorable situations which cause SLA violations in some scenarios. Here they use trend aware regression (TAR) methods as a load prediction model and perform linear regression analysis to detect the formation of hotspots in physical servers of cloud data centers. This prediction model provides an alarm period for the cloud administrators either to provide enough resources to avoid hotspot situations or perform interference aware virtual machine migration to balance the load on servers. Here they analyzed the physical server resource utilization model in terms of CPU utilization, memory utilization and network bandwidth utilization. In the TAR model, the authors consider the degree of variation between the current points in the prediction window to forecast the future points. The TAR model provides accurate results in its predictions.
基于TAR的云数据中心热点预测
在本文中,作者研究了云数据中心中的热点,这些热点是由于缺乏资源来满足客户机的峰值即时请求而导致的。云数据中心的资源利用性质在上下文中是完全动态的,可能会产生热点。热点是在某些场景下会导致SLA违规的不利情况。在这里,他们使用趋势感知回归(TAR)方法作为负载预测模型,并进行线性回归分析,检测云数据中心物理服务器热点的形成。该预测模型为云管理员提供了一个警报周期,以便提供足够的资源以避免热点情况,或者执行干扰感知的虚拟机迁移以平衡服务器上的负载。在这里,他们从CPU利用率、内存利用率和网络带宽利用率三个方面分析了物理服务器的资源利用模型。在TAR模型中,作者考虑了预测窗口中当前点之间的变化程度,以预测未来点。TAR模式提供了准确的预测结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
10.00%
发文量
24
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信