{"title":"The protective effect of vernonia amygdalina in lead acetate-induced nephrotoxicity in wistar rats","authors":"S. Innih, A. Ubhenin","doi":"10.4103/njecp.njecp_29_21","DOIUrl":null,"url":null,"abstract":"Introduction/Background: Inadvertent poisoning from indiscriminate use of lead acetate-containing agents has transformed into an issue of public health concern, most especially in developing countries, coupled with the paucity of potent antidotes. Aims: We investigated the protective effect of Vernonia amygdalina in lead acetate-induced nephrotoxicity in Wistar rats. Materials and Methods: In this study, thirty adult rats of either sex were divided into five groups of six animals each. Groups A and B were administered (daily) distilled water and lead acetate, respectively for 28 days. Groups C, D, and E received (daily) lead acetate at doses of 100 mg/kg body weight and aqueous extract of V. amygdalina at doses of 100, 200, and 250 mg/kg body weight, respectively, for 28 days. Results: The results from the study showed that were significant (P < 0.05) increases in the levels of serum creatinine, urea, sodium Na + and chloride Cl − in lead-intoxicated rats when compared to the control group. There was significant (P < 0.05) decrease in the serum levels of superoxide dismutase, catalase, peroxidase (GPx) Uric acid, URA and reduced glutathione (GSH) as the consequences of lead acetate administration. The histograms of the rats intoxicated with lead acetate were characterized by tubular necrosis and a reduction in myeloid-erythroid cells. Treatment with aqueous extract of V. amygdalina at the doses of 100, 200, and 250 mg/kg body weight significant (P < 0.05) protected against these alterations. The dose of 250 mg/kg exhibited the highest protective activity. Conclusion: Results of the present study may suggest that V. amygdalina possess a potent phytochemical that could be standardized for use in kidney and other related oxidative damage diseases.","PeriodicalId":19420,"journal":{"name":"Nigerian Journal of Experimental and Clinical Biosciences","volume":"39 1","pages":"227 - 233"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nigerian Journal of Experimental and Clinical Biosciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/njecp.njecp_29_21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction/Background: Inadvertent poisoning from indiscriminate use of lead acetate-containing agents has transformed into an issue of public health concern, most especially in developing countries, coupled with the paucity of potent antidotes. Aims: We investigated the protective effect of Vernonia amygdalina in lead acetate-induced nephrotoxicity in Wistar rats. Materials and Methods: In this study, thirty adult rats of either sex were divided into five groups of six animals each. Groups A and B were administered (daily) distilled water and lead acetate, respectively for 28 days. Groups C, D, and E received (daily) lead acetate at doses of 100 mg/kg body weight and aqueous extract of V. amygdalina at doses of 100, 200, and 250 mg/kg body weight, respectively, for 28 days. Results: The results from the study showed that were significant (P < 0.05) increases in the levels of serum creatinine, urea, sodium Na + and chloride Cl − in lead-intoxicated rats when compared to the control group. There was significant (P < 0.05) decrease in the serum levels of superoxide dismutase, catalase, peroxidase (GPx) Uric acid, URA and reduced glutathione (GSH) as the consequences of lead acetate administration. The histograms of the rats intoxicated with lead acetate were characterized by tubular necrosis and a reduction in myeloid-erythroid cells. Treatment with aqueous extract of V. amygdalina at the doses of 100, 200, and 250 mg/kg body weight significant (P < 0.05) protected against these alterations. The dose of 250 mg/kg exhibited the highest protective activity. Conclusion: Results of the present study may suggest that V. amygdalina possess a potent phytochemical that could be standardized for use in kidney and other related oxidative damage diseases.