On Multi-Label Classification for Non-Intrusive Load Identification using Low Sampling Frequency Datasets

M. Ahajjam, Chaimaa Essayeh, M. Ghogho, A. Kobbane
{"title":"On Multi-Label Classification for Non-Intrusive Load Identification using Low Sampling Frequency Datasets","authors":"M. Ahajjam, Chaimaa Essayeh, M. Ghogho, A. Kobbane","doi":"10.1109/I2MTC50364.2021.9460059","DOIUrl":null,"url":null,"abstract":"Non-intrusive load monitoring (NILM) aims to infer information about the electric consumption of individual loads using the premises' aggregate consumption. In this work, we target supervised multi-label classification for non-intrusive load identification. We describe how we have created a new dataset from Moroccan households using a low sampling frequency. Then, we analyze the performance of three machine learning models for NILM, and investigate the impact of signal input length on performance.","PeriodicalId":6772,"journal":{"name":"2021 IEEE International Instrumentation and Measurement Technology Conference (I2MTC)","volume":"24 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Instrumentation and Measurement Technology Conference (I2MTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/I2MTC50364.2021.9460059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Non-intrusive load monitoring (NILM) aims to infer information about the electric consumption of individual loads using the premises' aggregate consumption. In this work, we target supervised multi-label classification for non-intrusive load identification. We describe how we have created a new dataset from Moroccan households using a low sampling frequency. Then, we analyze the performance of three machine learning models for NILM, and investigate the impact of signal input length on performance.
基于低采样频率数据集的非侵入式负载识别多标签分类研究
非侵入式负荷监测(NILM)旨在利用建筑物的总耗电量推断个别负荷的耗电量信息。在这项工作中,我们的目标是监督多标签分类非侵入式负载识别。我们描述了我们如何使用低采样频率从摩洛哥家庭创建一个新的数据集。然后,我们分析了三种用于NILM的机器学习模型的性能,并研究了信号输入长度对性能的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信