Seung-Ho Ok, Kyeong-Ryeol Bae, S. Lim, Byungin Moon
{"title":"Design and analysis of 3D IC-based low power stereo matching processors","authors":"Seung-Ho Ok, Kyeong-Ryeol Bae, S. Lim, Byungin Moon","doi":"10.1109/ISLPED.2013.6629260","DOIUrl":null,"url":null,"abstract":"This paper presents comprehensive design and analysis results of 3D IC-based low-power stereo matching processors. Our design efforts range from architecture design and verification to RTL-to-GDSII design and sign-off analysis based on GlobalFoundries 130-nm PDK. We conduct comprehensive studies on the area, performance, and power benefits of our 3D IC designs over 2D IC designs. Our 2-tier 3D IC designs attain 43% area, 14% wire length, and 13% power saving over 2D IC designs. We also study a pipeline-based partitioning method shown to be effective at minimizing power consumption and the total number of TSVs while balancing the size of each tier.","PeriodicalId":20456,"journal":{"name":"Proceedings of the 2007 international symposium on Low power electronics and design (ISLPED '07)","volume":"25 1","pages":"15-20"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2007 international symposium on Low power electronics and design (ISLPED '07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISLPED.2013.6629260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
This paper presents comprehensive design and analysis results of 3D IC-based low-power stereo matching processors. Our design efforts range from architecture design and verification to RTL-to-GDSII design and sign-off analysis based on GlobalFoundries 130-nm PDK. We conduct comprehensive studies on the area, performance, and power benefits of our 3D IC designs over 2D IC designs. Our 2-tier 3D IC designs attain 43% area, 14% wire length, and 13% power saving over 2D IC designs. We also study a pipeline-based partitioning method shown to be effective at minimizing power consumption and the total number of TSVs while balancing the size of each tier.