{"title":"Refinements of asymptotics at zero of Brownian self-intersection local times","authors":"A. Dorogovtsev, N. Salhi","doi":"10.1142/s0219025723500182","DOIUrl":null,"url":null,"abstract":"In this article we establish some estimates related to the Gaussian densities and to Hermite polynomials in order to obtain an almost sure estimate for each term of the It\\^{o}-Wiener expansion of the self-intersection local times of the Brownian motion. In dimension $d\\geqslant 4$ the self-intersection local times of the Brownian motion can be considered as a family of measures on the classical Wiener space. We provide some asymptotics relative to these measures. Finally, we try to estimate the quadratic Wasserstein distance between these measures and the Wiener measure.","PeriodicalId":50366,"journal":{"name":"Infinite Dimensional Analysis Quantum Probability and Related Topics","volume":"58 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infinite Dimensional Analysis Quantum Probability and Related Topics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219025723500182","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this article we establish some estimates related to the Gaussian densities and to Hermite polynomials in order to obtain an almost sure estimate for each term of the It\^{o}-Wiener expansion of the self-intersection local times of the Brownian motion. In dimension $d\geqslant 4$ the self-intersection local times of the Brownian motion can be considered as a family of measures on the classical Wiener space. We provide some asymptotics relative to these measures. Finally, we try to estimate the quadratic Wasserstein distance between these measures and the Wiener measure.
期刊介绍:
In the past few years the fields of infinite dimensional analysis and quantum probability have undergone increasingly significant developments and have found many new applications, in particular, to classical probability and to different branches of physics. The number of first-class papers in these fields has grown at the same rate. This is currently the only journal which is devoted to these fields.
It constitutes an essential and central point of reference for the large number of mathematicians, mathematical physicists and other scientists who have been drawn into these areas. Both fields have strong interdisciplinary nature, with deep connection to, for example, classical probability, stochastic analysis, mathematical physics, operator algebras, irreversibility, ergodic theory and dynamical systems, quantum groups, classical and quantum stochastic geometry, quantum chaos, Dirichlet forms, harmonic analysis, quantum measurement, quantum computer, etc. The journal reflects this interdisciplinarity and welcomes high quality papers in all such related fields, particularly those which reveal connections with the main fields of this journal.