Shared Randomness in Arbitrarily Varying Channels

Sagnik Bhattacharya, Amitalok J. Budkuley, S. Jaggi
{"title":"Shared Randomness in Arbitrarily Varying Channels","authors":"Sagnik Bhattacharya, Amitalok J. Budkuley, S. Jaggi","doi":"10.1109/ISIT.2019.8849801","DOIUrl":null,"url":null,"abstract":"We study an adversarial communication problem where sender Alice wishes to send a message m to receiver Bob over an arbitrarily varying channel (AVC) controlled by a malicious adversary James. We assume that Alice and Bob share randomness K unknown to James. Using K, Alice first encodes the message m to a codeword X and transmits it over the AVC. James knows the message m, the (randomized) codebook and the codeword X. James then inputs a jamming state S to disrupt communication; we assume a state-deterministic AVC where S completely specifies the channel noise. Bob receives a noisy version Y of codeword X; it outputs a message estimate $\\mathop {\\hat m}$ using Y and the shared randomness K. We study AVCs, called ‘adversary-weakened’ AVCs here, where the availability of shared randomness strictly improves the optimum throughput or capacity over it than when it is not available; the randomized coding capacity characterizes the largest rate possible when K is unrestricted. In this work, we characterize the exact threshold for the amount of shared randomness K so as to achieve the randomized coding capacity for ‘adversary-weakened’ AVCs.We show that exactly log(n) equiprobable and independent bits of randomness, shared between Alice and Bob and unknown to adversary James, are both necessary and sufficient for achieving randomized coding capacity for ‘adversary-weakened’ AVCs. For sufficiency, our achievability is based on a randomized code construction which uses deterministic list codes along with a polynomial hashing technique which uses the shared randomness. Our converse, which establishes the necessity of log(n) bits of shared randomness, uses a known approach for binary AVCs, and extends it to general ‘adversary-weakened’ AVCs using a notion of confusable codewords.","PeriodicalId":6708,"journal":{"name":"2019 IEEE International Symposium on Information Theory (ISIT)","volume":"1 1","pages":"627-631"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Symposium on Information Theory (ISIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2019.8849801","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

We study an adversarial communication problem where sender Alice wishes to send a message m to receiver Bob over an arbitrarily varying channel (AVC) controlled by a malicious adversary James. We assume that Alice and Bob share randomness K unknown to James. Using K, Alice first encodes the message m to a codeword X and transmits it over the AVC. James knows the message m, the (randomized) codebook and the codeword X. James then inputs a jamming state S to disrupt communication; we assume a state-deterministic AVC where S completely specifies the channel noise. Bob receives a noisy version Y of codeword X; it outputs a message estimate $\mathop {\hat m}$ using Y and the shared randomness K. We study AVCs, called ‘adversary-weakened’ AVCs here, where the availability of shared randomness strictly improves the optimum throughput or capacity over it than when it is not available; the randomized coding capacity characterizes the largest rate possible when K is unrestricted. In this work, we characterize the exact threshold for the amount of shared randomness K so as to achieve the randomized coding capacity for ‘adversary-weakened’ AVCs.We show that exactly log(n) equiprobable and independent bits of randomness, shared between Alice and Bob and unknown to adversary James, are both necessary and sufficient for achieving randomized coding capacity for ‘adversary-weakened’ AVCs. For sufficiency, our achievability is based on a randomized code construction which uses deterministic list codes along with a polynomial hashing technique which uses the shared randomness. Our converse, which establishes the necessity of log(n) bits of shared randomness, uses a known approach for binary AVCs, and extends it to general ‘adversary-weakened’ AVCs using a notion of confusable codewords.
任意变化通道中的共享随机性
我们研究了一个对抗性通信问题,其中发送方Alice希望通过由恶意对手James控制的任意可变信道(AVC)向接收方Bob发送消息m。我们假设Alice和Bob共享James不知道的随机性K。使用K, Alice首先将消息m编码为码字X,并通过AVC传输。James知道消息m、(随机的)码本和码字x,然后James输入干扰状态S来中断通信;我们假设一个状态确定性的AVC,其中S完全指定了信道噪声。Bob接收到码字X的带噪声版本Y;它使用Y和共享随机性k输出消息估计$\mathop {\hat m}$。我们研究avc,这里称为“对手削弱”avc,其中共享随机性的可用性比不可用时严格提高了最佳吞吐量或容量;随机编码容量表征K不受限制时可能的最大速率。在这项工作中,我们描述了共享随机性K的确切阈值,以实现“对手削弱”avc的随机编码容量。我们表明,在Alice和Bob之间共享且对手James未知的log(n)等概率和独立随机性位,对于实现“削弱对手”的avc的随机编码能力既是必要的,也是充分的。对于充分性,我们的可实现性基于随机码结构,该结构使用确定性列表码以及使用共享随机性的多项式哈希技术。我们的逆向,建立了log(n)位共享随机性的必要性,使用已知的二进制avc方法,并使用可混淆码字的概念将其扩展到一般的“对手削弱”avc。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信