On Generalization and Computation of Tukey's Depth: Part II

Yiyuan She, Shao Tang, Jingze Liu
{"title":"On Generalization and Computation of Tukey's Depth: Part II","authors":"Yiyuan She, Shao Tang, Jingze Liu","doi":"10.52933/jdssv.v2i2.61","DOIUrl":null,"url":null,"abstract":"This paper studies how to generalize Tukey's depth to problems defined in a restricted space that may be curved or have boundaries, and to problems with a nondifferentiable objective. First, using a manifold approach, we propose a broad class of Riemannian \ndepth for smooth problems defined on a Riemannian manifold, and showcase its applications in spherical data analysis, principal component analysis, and multivariate orthogonal regression. Moreover, for nonsmooth problems, we introduce additional slack variables and inequality constraints to define a novel slacked data depth, which can perform center-outward rankings of estimators arising from sparse learning and reduced rank regression. Real data examples illustrate the usefulness of some proposed data depths. \n ","PeriodicalId":93459,"journal":{"name":"Journal of data science, statistics, and visualisation","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of data science, statistics, and visualisation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52933/jdssv.v2i2.61","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper studies how to generalize Tukey's depth to problems defined in a restricted space that may be curved or have boundaries, and to problems with a nondifferentiable objective. First, using a manifold approach, we propose a broad class of Riemannian depth for smooth problems defined on a Riemannian manifold, and showcase its applications in spherical data analysis, principal component analysis, and multivariate orthogonal regression. Moreover, for nonsmooth problems, we introduce additional slack variables and inequality constraints to define a novel slacked data depth, which can perform center-outward rankings of estimators arising from sparse learning and reduced rank regression. Real data examples illustrate the usefulness of some proposed data depths.  
土基深度的概化与计算:第二部分
本文研究了如何将Tukey深度推广到定义在受限空间中可能是弯曲的或有边界的问题,以及具有不可微目标的问题。首先,使用流形方法,我们提出了一类广义的黎曼深度,用于黎曼流形上定义的光滑问题,并展示了它在球面数据分析、主成分分析和多元正交回归中的应用。此外,对于非光滑问题,我们引入了额外的松弛变量和不等式约束来定义新的松弛数据深度,该深度可以对稀疏学习和降秩回归产生的估计量进行中心向外排序。真实的数据示例说明了一些建议的数据深度的有用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信