{"title":"Outerproduct of trajectory matrix for acoustic modeling using support vector machines","authors":"R. Anitha, D. S. Satish, C. Sekhar","doi":"10.1109/MLSP.2004.1422993","DOIUrl":null,"url":null,"abstract":"In this paper, we address the issues in classification of varying duration segments of speech using support vector machines. Commonly used methods for mapping the varying duration segments into fixed dimension patterns may lead to loss of crucial information necessary for classification. We propose a method in which the representation of a segment of speech is considered as a trajectory in a multidimensional space. A fixed dimension pattern vector derived from the outerproduct operation on the matrix representation of a multidimensional trajectory is given as input to the support vector machines. For acoustic modeling of speech segments consisting of multiple phonemes, the outerproduct operation is carried out for the trajectory matrix of each phoneme. The effectiveness of the proposed methods is demonstrated in recognition of isolated utterances of the E-set of English alphabet","PeriodicalId":70952,"journal":{"name":"信号处理","volume":"29 1","pages":"355-363"},"PeriodicalIF":0.0000,"publicationDate":"2004-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"信号处理","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1109/MLSP.2004.1422993","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
In this paper, we address the issues in classification of varying duration segments of speech using support vector machines. Commonly used methods for mapping the varying duration segments into fixed dimension patterns may lead to loss of crucial information necessary for classification. We propose a method in which the representation of a segment of speech is considered as a trajectory in a multidimensional space. A fixed dimension pattern vector derived from the outerproduct operation on the matrix representation of a multidimensional trajectory is given as input to the support vector machines. For acoustic modeling of speech segments consisting of multiple phonemes, the outerproduct operation is carried out for the trajectory matrix of each phoneme. The effectiveness of the proposed methods is demonstrated in recognition of isolated utterances of the E-set of English alphabet
期刊介绍:
Journal of Signal Processing is an academic journal supervised by China Association for Science and Technology and sponsored by China Institute of Electronics. The journal is an academic journal that reflects the latest research results and technological progress in the field of signal processing and related disciplines. It covers academic papers and review articles on new theories, new ideas, and new technologies in the field of signal processing. The journal aims to provide a platform for academic exchanges for scientific researchers and engineering and technical personnel engaged in basic research and applied research in signal processing, thereby promoting the development of information science and technology. At present, the journal has been included in the three major domestic core journal databases "China Science Citation Database (CSCD), China Science and Technology Core Journals (CSTPCD), Chinese Core Journals Overview" and Coaj. It is also included in many foreign databases such as Scopus, CSA, EBSCO host, INSPEC, JST, etc.