Establishing a predictive model for fast online determination of relative density and refractive index of e-cigarette liquids using near-infrared spectroscopy

Zhang Jianqiang, Liang Jingjing, Liu Weijuan, Lin Changyu, Wu Shujiao, Yang Yanmei
{"title":"Establishing a predictive model for fast online determination of relative density and refractive index of e-cigarette liquids using near-infrared spectroscopy","authors":"Zhang Jianqiang, Liang Jingjing, Liu Weijuan, Lin Changyu, Wu Shujiao, Yang Yanmei","doi":"10.16135/J.ISSN1002-0861.2018.0420","DOIUrl":null,"url":null,"abstract":"Relative density and refractive index are two fundamental physical properties of e-cigarette liquids to indicate their uniformity and batch stability. These parameters are mainly determined by a density meter and refractometer respectively, which is tedious and the analysis results are not readily available for massive measurements. A rapid determination of the two parameters is important for quality inspection and control of e-cigarette liquids, and a lot efforts have been devoted to establishing a predictive model for these parameters. In this study, a novel near-infrared spectroscopy (NIR) combined with particle swarm optimization-support vector regression (PSO-SVR) algorithm was applied to build a prediction model. The experimental results showed that comparing with the traditional partial least squares regression (PLSR) model and the principal component regression (PCR) model, the PSO-SVR model had superior prediction performance.","PeriodicalId":23146,"journal":{"name":"Tobacco Science & Technology","volume":"105 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tobacco Science & Technology","FirstCategoryId":"1091","ListUrlMain":"https://doi.org/10.16135/J.ISSN1002-0861.2018.0420","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Relative density and refractive index are two fundamental physical properties of e-cigarette liquids to indicate their uniformity and batch stability. These parameters are mainly determined by a density meter and refractometer respectively, which is tedious and the analysis results are not readily available for massive measurements. A rapid determination of the two parameters is important for quality inspection and control of e-cigarette liquids, and a lot efforts have been devoted to establishing a predictive model for these parameters. In this study, a novel near-infrared spectroscopy (NIR) combined with particle swarm optimization-support vector regression (PSO-SVR) algorithm was applied to build a prediction model. The experimental results showed that comparing with the traditional partial least squares regression (PLSR) model and the principal component regression (PCR) model, the PSO-SVR model had superior prediction performance.
建立了近红外光谱在线快速测定电子烟液体相对密度和折射率的预测模型
相对密度和折射率是电子烟液体的两个基本物理性质,反映了电子烟液体的均匀性和批次稳定性。这些参数主要分别由密度计和折光计测定,测定过程繁琐,分析结果难以用于大规模测量。快速确定这两个参数对电子烟液的质量检测和控制具有重要意义,建立这两个参数的预测模型已经做了大量的工作。本研究采用新型近红外光谱(NIR)结合粒子群优化-支持向量回归(PSO-SVR)算法建立预测模型。实验结果表明,与传统的偏最小二乘回归(PLSR)模型和主成分回归(PCR)模型相比,PSO-SVR模型具有更好的预测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信