Zehai Zhang, Jun Zhang, Xiao Liu, Kun Zheng, H. Yi, Jian-sheng Wang
{"title":"Microwave-heated high-silica glass cloth reinforced polyimide-based metamaterial absorber for aircraft deicing","authors":"Zehai Zhang, Jun Zhang, Xiao Liu, Kun Zheng, H. Yi, Jian-sheng Wang","doi":"10.1080/08327823.2021.1916679","DOIUrl":null,"url":null,"abstract":"Abstract This study discusses development of a microwave-heated thin-panel metamaterial absorber (MA) for application in aircraft deicing. The base of the MA was selected to be high-silica glass cloth reinforced polyimide (GCRP), manufactured through the autoclave process. The material’s surfaces were sprayed with metal powder as per the absorber design. In simulation with an optimized parameter set, the MA had a minimum reflectivity of −35 dB at 2.45 GHz. Two rounds of microwave heating experiments were conducted, studying different MA designs. In the first round of experiments, conducted in a stainless-steel mesh chamber, the minimum reflectivity of the first six samples tested, observed at 2.45 GHz, was approximately −5 dB. The accompanying thermal images indicate that the MA is heated periodically, according to the spatial distribution of the electromagnetic field, with an overall heating rate of approximately 0.001 °C/s/W. Clearer thermal images were obtained in the second round of experiments, conducted in a microwave anechoic chamber, where a heating rate of 0.01 °C/s/W was observed near the new MA’s resonant frequency of 2.28 GHz. At this frequency, the MA’s reflectivity was −7.63 dB. These results indicate that the developed MA has potential for application in aircraft deicing.","PeriodicalId":16556,"journal":{"name":"Journal of Microwave Power and Electromagnetic Energy","volume":"28 1","pages":"140 - 152"},"PeriodicalIF":0.9000,"publicationDate":"2021-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Microwave Power and Electromagnetic Energy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/08327823.2021.1916679","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract This study discusses development of a microwave-heated thin-panel metamaterial absorber (MA) for application in aircraft deicing. The base of the MA was selected to be high-silica glass cloth reinforced polyimide (GCRP), manufactured through the autoclave process. The material’s surfaces were sprayed with metal powder as per the absorber design. In simulation with an optimized parameter set, the MA had a minimum reflectivity of −35 dB at 2.45 GHz. Two rounds of microwave heating experiments were conducted, studying different MA designs. In the first round of experiments, conducted in a stainless-steel mesh chamber, the minimum reflectivity of the first six samples tested, observed at 2.45 GHz, was approximately −5 dB. The accompanying thermal images indicate that the MA is heated periodically, according to the spatial distribution of the electromagnetic field, with an overall heating rate of approximately 0.001 °C/s/W. Clearer thermal images were obtained in the second round of experiments, conducted in a microwave anechoic chamber, where a heating rate of 0.01 °C/s/W was observed near the new MA’s resonant frequency of 2.28 GHz. At this frequency, the MA’s reflectivity was −7.63 dB. These results indicate that the developed MA has potential for application in aircraft deicing.
期刊介绍:
The Journal of the Microwave Power Energy (JMPEE) is a quarterly publication of the International Microwave Power Institute (IMPI), aimed to be one of the primary sources of the most reliable information in the arts and sciences of microwave and RF technology. JMPEE provides space to engineers and researchers for presenting papers about non-communication applications of microwave and RF, mostly industrial, scientific, medical and instrumentation. Topics include, but are not limited to: applications in materials science and nanotechnology, characterization of biological tissues, food industry applications, green chemistry, health and therapeutic applications, microwave chemistry, microwave processing of materials, soil remediation, and waste processing.