On the operator norm of a Hermitian random matrix with correlated entries

Pub Date : 2021-03-05 DOI:10.1142/S2010326322500368
Jana Reker
{"title":"On the operator norm of a Hermitian random matrix with correlated entries","authors":"Jana Reker","doi":"10.1142/S2010326322500368","DOIUrl":null,"url":null,"abstract":"We consider a correlated [Formula: see text] Hermitian random matrix with a polynomially decaying metric correlation structure. By calculating the trace of the moments of the matrix and using the summable decay of the cumulants, we show that its operator norm is stochastically dominated by one.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/S2010326322500368","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider a correlated [Formula: see text] Hermitian random matrix with a polynomially decaying metric correlation structure. By calculating the trace of the moments of the matrix and using the summable decay of the cumulants, we show that its operator norm is stochastically dominated by one.
分享
查看原文
具有相关项的厄米随机矩阵的算子范数
我们考虑一个具有多项式衰减度量相关结构的相关[公式:见文本]厄米随机矩阵。通过计算矩阵矩的轨迹,并利用累积量的可和衰减,我们证明了它的算子范数是随机被1支配的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信