Robust Speech Recognition Using Adaptive Noise Cancellation

M. Waqas, M. A. Khan, M. Naeem, Asma Gul, Nasir Ahmad
{"title":"Robust Speech Recognition Using Adaptive Noise Cancellation","authors":"M. Waqas, M. A. Khan, M. Naeem, Asma Gul, Nasir Ahmad","doi":"10.26692/SURJ/2017.12.78","DOIUrl":null,"url":null,"abstract":"This paper introduces the adaptive noise cancellation technique for the noise reduction in Robust Automatic Speech Recognition. The adaptive noise cancellation is used as front-end stage to enhance the extracted features for speech recognition under noisy conditions. More specifically, the Constrained Stability Least Mean Square (CS-LMS) algorithm which is a member of the family of adaptive filters has been applied. The Hidden Markov Model based Tool Kit (HTK) is used for training and testing the Automatic Speech Recognizer system. The result obtained shows that the application of adoptive filtering at the front-end enhances the performance of the system in noisy conditions while the CS-LMS algorithm gives the most superior performance among the family of LMS algorithms.","PeriodicalId":21859,"journal":{"name":"Sindh University Research Journal","volume":"100 1","pages":"895-898"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sindh University Research Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26692/SURJ/2017.12.78","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces the adaptive noise cancellation technique for the noise reduction in Robust Automatic Speech Recognition. The adaptive noise cancellation is used as front-end stage to enhance the extracted features for speech recognition under noisy conditions. More specifically, the Constrained Stability Least Mean Square (CS-LMS) algorithm which is a member of the family of adaptive filters has been applied. The Hidden Markov Model based Tool Kit (HTK) is used for training and testing the Automatic Speech Recognizer system. The result obtained shows that the application of adoptive filtering at the front-end enhances the performance of the system in noisy conditions while the CS-LMS algorithm gives the most superior performance among the family of LMS algorithms.
基于自适应噪声消除的鲁棒语音识别
介绍了鲁棒自动语音识别中的自适应降噪技术。采用自适应噪声消除作为前端,增强提取的特征,用于噪声条件下的语音识别。具体地说,采用了约束稳定最小均方(CS-LMS)算法作为自适应滤波器族的一员。基于隐马尔可夫模型的工具包(HTK)用于自动语音识别系统的训练和测试。结果表明,在前端应用自适应滤波可以提高系统在噪声条件下的性能,而CS-LMS算法在LMS算法族中具有最优的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信