Bringing Trimmed Serendipity Methods to Computational Practice in Firedrake

J. Crum, Cyrus Cheng, D. Ham, L. Mitchell, R. Kirby, J. Levine, A. Gillette
{"title":"Bringing Trimmed Serendipity Methods to Computational Practice in Firedrake","authors":"J. Crum, Cyrus Cheng, D. Ham, L. Mitchell, R. Kirby, J. Levine, A. Gillette","doi":"10.1145/3490485","DOIUrl":null,"url":null,"abstract":"We present an implementation of the trimmed serendipity finite element family, using the open-source finite element package Firedrake. The new elements can be used seamlessly within the software suite for problems requiring H1, H(curl), or H(div)-conforming elements on meshes of squares or cubes. To test how well trimmed serendipity elements perform in comparison to traditional tensor product elements, we perform a sequence of numerical experiments including the primal Poisson, mixed Poisson, and Maxwell cavity eigenvalue problems. Overall, we find that the trimmed serendipity elements converge, as expected, at the same rate as the respective tensor product elements, while being able to offer significant savings in the time or memory required to solve certain problems.","PeriodicalId":7036,"journal":{"name":"ACM Transactions on Mathematical Software (TOMS)","volume":"48 1","pages":"1 - 19"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Mathematical Software (TOMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3490485","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

We present an implementation of the trimmed serendipity finite element family, using the open-source finite element package Firedrake. The new elements can be used seamlessly within the software suite for problems requiring H1, H(curl), or H(div)-conforming elements on meshes of squares or cubes. To test how well trimmed serendipity elements perform in comparison to traditional tensor product elements, we perform a sequence of numerical experiments including the primal Poisson, mixed Poisson, and Maxwell cavity eigenvalue problems. Overall, we find that the trimmed serendipity elements converge, as expected, at the same rate as the respective tensor product elements, while being able to offer significant savings in the time or memory required to solve certain problems.
将修剪的意外发现方法引入Firedrake的计算实践
我们使用开源有限元包Firedrake实现了修剪过的serendipity有限元族。新元素可以在软件套件中无缝使用,用于需要在正方形或立方体网格上符合H1、H(旋度)或H(div)的元素的问题。为了测试裁剪好的意外元素与传统张量积元素相比表现如何,我们进行了一系列数值实验,包括原始泊松、混合泊松和麦克斯韦腔特征值问题。总的来说,我们发现修剪的serendipity元素收敛,正如预期的那样,与各自的张量积元素以相同的速度收敛,同时能够在解决某些问题所需的时间或内存方面提供显着节省。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信