Keyword Search over Knowledge Graphs via Static and Dynamic Hub Labelings

Yuxuan Shi, Gong Cheng, E. Kharlamov
{"title":"Keyword Search over Knowledge Graphs via Static and Dynamic Hub Labelings","authors":"Yuxuan Shi, Gong Cheng, E. Kharlamov","doi":"10.1145/3366423.3380110","DOIUrl":null,"url":null,"abstract":"Keyword search is a prominent approach to querying Web data. For graph-structured data, a widely accepted semantics for keywords is based on group Steiner trees. For this NP-hard problem, existing algorithms with provable quality guarantees have prohibitive run time on large graphs. In this paper, we propose practical approximation algorithms with a guaranteed quality of computed answers and very low run time. Our algorithms rely on Hub Labeling (HL), a structure that labels each vertex in a graph with a list of vertices reachable from it, which we use to compute distances and shortest paths. We devise two HLs: a conventional static HL that uses a new heuristic to improve pruned landmark labeling, and a novel dynamic HL that inverts and aggregates query-relevant static labels to more efficiently process vertex sets. Our approach allows to compute a reasonably good approximation of answers to keyword queries in milliseconds on million-scale knowledge graphs.","PeriodicalId":20754,"journal":{"name":"Proceedings of The Web Conference 2020","volume":"24 3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of The Web Conference 2020","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3366423.3380110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

Abstract

Keyword search is a prominent approach to querying Web data. For graph-structured data, a widely accepted semantics for keywords is based on group Steiner trees. For this NP-hard problem, existing algorithms with provable quality guarantees have prohibitive run time on large graphs. In this paper, we propose practical approximation algorithms with a guaranteed quality of computed answers and very low run time. Our algorithms rely on Hub Labeling (HL), a structure that labels each vertex in a graph with a list of vertices reachable from it, which we use to compute distances and shortest paths. We devise two HLs: a conventional static HL that uses a new heuristic to improve pruned landmark labeling, and a novel dynamic HL that inverts and aggregates query-relevant static labels to more efficiently process vertex sets. Our approach allows to compute a reasonably good approximation of answers to keyword queries in milliseconds on million-scale knowledge graphs.
通过静态和动态中心标签对知识图进行关键字搜索
关键字搜索是查询Web数据的一种重要方法。对于图结构数据,广泛接受的关键字语义是基于组斯坦纳树。对于这个np困难问题,现有的具有可证明质量保证的算法在大型图上的运行时间令人望而却步。在本文中,我们提出了实用的近似算法,保证了计算结果的质量和非常低的运行时间。我们的算法依赖于Hub Labeling (HL),这是一种用可到达的顶点列表标记图中的每个顶点的结构,我们用它来计算距离和最短路径。我们设计了两种HLs:一种是传统的静态HL,它使用一种新的启发式方法来改进已修剪的地标标记;另一种是新的动态HL,它反转和聚合查询相关的静态标签,以更有效地处理顶点集。我们的方法允许在百万级知识图上以毫秒为单位计算关键字查询的相当好的近似答案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信