Static and Dynamic Hand Gesture Recognition Using CNN Models

Keyi Wang, Shoreline Washington Usa. th Ave. Nw
{"title":"Static and Dynamic Hand Gesture Recognition Using CNN Models","authors":"Keyi Wang, Shoreline Washington Usa. th Ave. Nw","doi":"10.17706/ijbbb.2021.11.3.65-73","DOIUrl":null,"url":null,"abstract":"Similar to the touchscreen, hand gesture based human computer interaction (HCI) is a technology that could allow people to perform a variety of tasks faster and more conveniently. This paper proposes a training method of an imaged-based hand gesture image and video clip recognition system using Convolutional Neural Networks (CNN). A dataset containing images of 6 different static hand gestures is used to train a 2D CNN model. ~98% accuracy is achieved. Furthermore, a 3D CNN model is trained on a dataset containing video clips of 4 dynamic hand gestures resulting in ~83% accuracy. This research demonstrates that a Cozmo robot loaded with pre-trained models is able to recognize static and dynamic hand gestures.","PeriodicalId":13816,"journal":{"name":"International Journal of Bioscience, Biochemistry and Bioinformatics","volume":"222 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Bioscience, Biochemistry and Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17706/ijbbb.2021.11.3.65-73","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Similar to the touchscreen, hand gesture based human computer interaction (HCI) is a technology that could allow people to perform a variety of tasks faster and more conveniently. This paper proposes a training method of an imaged-based hand gesture image and video clip recognition system using Convolutional Neural Networks (CNN). A dataset containing images of 6 different static hand gestures is used to train a 2D CNN model. ~98% accuracy is achieved. Furthermore, a 3D CNN model is trained on a dataset containing video clips of 4 dynamic hand gestures resulting in ~83% accuracy. This research demonstrates that a Cozmo robot loaded with pre-trained models is able to recognize static and dynamic hand gestures.
使用CNN模型的静态和动态手势识别
与触摸屏类似,基于手势的人机交互(HCI)是一种可以让人们更快、更方便地执行各种任务的技术。本文提出了一种基于卷积神经网络(CNN)的基于图像的手势图像和视频识别系统的训练方法。使用包含6种不同静态手势图像的数据集来训练2D CNN模型。准确度达到98%。此外,在包含4个动态手势的视频片段的数据集上训练3D CNN模型,准确率约为83%。本研究表明,加载了预训练模型的Cozmo机器人能够识别静态和动态手势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信