Decomposition algorithms for tensors and polynomials

IF 1.6 2区 数学 Q2 MATHEMATICS, APPLIED
A. Laface, Alex Massarenti, Rick Rischter
{"title":"Decomposition algorithms for tensors and polynomials","authors":"A. Laface, Alex Massarenti, Rick Rischter","doi":"10.1137/21m1453712","DOIUrl":null,"url":null,"abstract":"We give algorithms to compute decompositions of a given polynomial, or more generally mixed tensor, as sum of rank one tensors, and to establish whether such a decomposition is unique. In particular, we present methods to compute the decomposition of a general plane quintic in seven powers, and of a general space cubic in five powers; the two decompositions of a general plane sextic of rank nine, and the five decompositions of a general plane septic. Furthermore, we give Magma implementations of all our algorithms.","PeriodicalId":48489,"journal":{"name":"SIAM Journal on Applied Algebra and Geometry","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2021-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Applied Algebra and Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/21m1453712","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

Abstract

We give algorithms to compute decompositions of a given polynomial, or more generally mixed tensor, as sum of rank one tensors, and to establish whether such a decomposition is unique. In particular, we present methods to compute the decomposition of a general plane quintic in seven powers, and of a general space cubic in five powers; the two decompositions of a general plane sextic of rank nine, and the five decompositions of a general plane septic. Furthermore, we give Magma implementations of all our algorithms.
张量和多项式的分解算法
我们给出了一个算法来计算一个给定多项式的分解,或者更一般的混合张量,作为秩一张量的和,并确定这样的分解是否唯一。特别地,我们给出了一般平面五次的七次分解和一般空间三次的五次分解的计算方法;一般平面的两种分解为九阶六阶,一般平面的五种分解为九阶六阶。此外,我们还提供了所有算法的Magma实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
19
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信