{"title":"Relativistic three-particle quantization condition for nondegenerate scalars","authors":"T. Blanton, S. Sharpe","doi":"10.1103/PHYSREVD.103.054503","DOIUrl":null,"url":null,"abstract":"The formalism relating the relativistic three-particle infinite-volume scattering amplitude to the finite-volume spectrum has been developed thus far only for identical or degenerate particles. We provide the generalization to the case of three nondegenerate scalar particles with arbitrary masses. A key quantity in this formalism is the quantization condition, which relates the spectrum to an intermediate K matrix. We derive three versions of this quantization condition, each a natural generalization of the corresponding results for identical particles. In each case we also determine the integral equations relating the intermediate K matrix to the three-particle scattering amplitude, $\\mathcal M_3$. The version that is likely to be most practical involves a single Lorentz-invariant intermediate K matrix, $\\widetilde{\\mathcal K}_{\\rm df,3}$. The other versions involve a matrix of K matrices, with elements distinguished by the choice of which initial and final particles are the spectators. Our approach should allow a straightforward generalization of the relativistic approach to all other three-particle systems of interest.","PeriodicalId":8440,"journal":{"name":"arXiv: High Energy Physics - Lattice","volume":"41 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: High Energy Physics - Lattice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PHYSREVD.103.054503","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20
Abstract
The formalism relating the relativistic three-particle infinite-volume scattering amplitude to the finite-volume spectrum has been developed thus far only for identical or degenerate particles. We provide the generalization to the case of three nondegenerate scalar particles with arbitrary masses. A key quantity in this formalism is the quantization condition, which relates the spectrum to an intermediate K matrix. We derive three versions of this quantization condition, each a natural generalization of the corresponding results for identical particles. In each case we also determine the integral equations relating the intermediate K matrix to the three-particle scattering amplitude, $\mathcal M_3$. The version that is likely to be most practical involves a single Lorentz-invariant intermediate K matrix, $\widetilde{\mathcal K}_{\rm df,3}$. The other versions involve a matrix of K matrices, with elements distinguished by the choice of which initial and final particles are the spectators. Our approach should allow a straightforward generalization of the relativistic approach to all other three-particle systems of interest.