Optimizing an Analog Neuron Circuit Design for Nonlinear Function Approximation

Alexander Neckar, T. Stewart, B. Benjamin, K. Boahen
{"title":"Optimizing an Analog Neuron Circuit Design for Nonlinear Function Approximation","authors":"Alexander Neckar, T. Stewart, B. Benjamin, K. Boahen","doi":"10.1109/ISCAS.2018.8351459","DOIUrl":null,"url":null,"abstract":"Silicon neurons designed using subthreshold analog-circuit techniques offer low power and compact area but are exponentially sensitive to threshold-voltage mismatch in transistors. The resulting heterogeneity in the neurons' responses, however, provides a diverse set of basis functions for smooth nonlinear function approximation. For low-order polynomials, neuron spiking thresholds ought to be distributed uniformly across the function's domain. This uniform distribution is difficult to achieve solely by sizing transistors to titrate mismatch. With too much mismatch, many neuron's thresholds fall outside the domain (i.e. they either always spike or remain silent). With too little mismatch, all their thresholds bunch up in the middle of the domain. Here, we present a silicon-neuron design methodology that minimizes overall area by optimizing transistor sizes in concert with a few locally-stored programmable bits to adjust each neuron's offset (and gain). We validated this methodology in a 28-nm mixed analog-digital CMOS process. Compared to relying on mismatch alone, augmentation with digital correction effectively reduced silicon area by 38%.","PeriodicalId":6569,"journal":{"name":"2018 IEEE International Symposium on Circuits and Systems (ISCAS)","volume":"47 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Symposium on Circuits and Systems (ISCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCAS.2018.8351459","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Silicon neurons designed using subthreshold analog-circuit techniques offer low power and compact area but are exponentially sensitive to threshold-voltage mismatch in transistors. The resulting heterogeneity in the neurons' responses, however, provides a diverse set of basis functions for smooth nonlinear function approximation. For low-order polynomials, neuron spiking thresholds ought to be distributed uniformly across the function's domain. This uniform distribution is difficult to achieve solely by sizing transistors to titrate mismatch. With too much mismatch, many neuron's thresholds fall outside the domain (i.e. they either always spike or remain silent). With too little mismatch, all their thresholds bunch up in the middle of the domain. Here, we present a silicon-neuron design methodology that minimizes overall area by optimizing transistor sizes in concert with a few locally-stored programmable bits to adjust each neuron's offset (and gain). We validated this methodology in a 28-nm mixed analog-digital CMOS process. Compared to relying on mismatch alone, augmentation with digital correction effectively reduced silicon area by 38%.
非线性函数逼近模拟神经元电路的优化设计
采用亚阈值模拟电路技术设计的硅神经元具有低功耗和紧凑的面积,但对晶体管的阈值电压失配非常敏感。然而,由此产生的神经元响应的异质性为光滑非线性函数逼近提供了一组不同的基函数。对于低阶多项式,神经元峰值阈值应该均匀分布在函数的域上。这种均匀分布很难仅仅通过调整晶体管的尺寸来滴定失配来实现。如果不匹配太多,许多神经元的阈值就会落在域外(即它们要么总是尖峰,要么保持沉默)。如果不匹配太少,它们所有的阈值都集中在域的中间。在这里,我们提出了一种硅神经元设计方法,通过优化晶体管尺寸和一些本地存储的可编程位来调整每个神经元的偏移量(和增益),从而使总体面积最小化。我们在28纳米混合模拟-数字CMOS工艺中验证了该方法。与单独依靠错配相比,数字校正增强有效地减少了38%的硅面积。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信