Optimizing feature extraction for speech recognition

Chulhee Lee, Donghoon Hyun, E. Choi, Jinwook Go, Chungyong Lee
{"title":"Optimizing feature extraction for speech recognition","authors":"Chulhee Lee, Donghoon Hyun, E. Choi, Jinwook Go, Chungyong Lee","doi":"10.1109/TSA.2002.805644","DOIUrl":null,"url":null,"abstract":"We propose a method to minimize the loss of information during the feature extraction stage in speech recognition by optimizing the parameters of the mel-cepstrum transformation, a transform which is widely used in speech recognition. Typically, the mel-cepstrum is obtained by critical band filters whose characteristics play an important role in converting a speech signal into a sequence of vectors. First, we analyze the performance of the mel-cepstrum by changing the parameters of the filters such as shape, center frequency, and bandwidth. Then we propose an algorithm to optimize the parameters of the filters using the simplex method. Experiments with Korean digit words show that the recognition rate improved by about 4-7%.","PeriodicalId":13155,"journal":{"name":"IEEE Trans. Speech Audio Process.","volume":"45 1","pages":"80-87"},"PeriodicalIF":0.0000,"publicationDate":"2003-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"56","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Trans. Speech Audio Process.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TSA.2002.805644","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 56

Abstract

We propose a method to minimize the loss of information during the feature extraction stage in speech recognition by optimizing the parameters of the mel-cepstrum transformation, a transform which is widely used in speech recognition. Typically, the mel-cepstrum is obtained by critical band filters whose characteristics play an important role in converting a speech signal into a sequence of vectors. First, we analyze the performance of the mel-cepstrum by changing the parameters of the filters such as shape, center frequency, and bandwidth. Then we propose an algorithm to optimize the parameters of the filters using the simplex method. Experiments with Korean digit words show that the recognition rate improved by about 4-7%.
优化语音识别特征提取
针对语音识别中广泛应用的梅尔倒谱变换,本文提出了一种通过优化梅尔倒谱变换参数来减少语音识别特征提取阶段信息丢失的方法。通常,mel-倒频谱是由临界带滤波器获得的,其特性在将语音信号转换为矢量序列中起着重要作用。首先,我们通过改变滤波器的形状、中心频率和带宽等参数来分析梅尔倒频谱的性能。然后提出了一种利用单纯形法优化滤波器参数的算法。对韩语数字词的实验表明,该方法的识别率提高了约4-7%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信