Executing Optimized Irregular Applications Using Task Graphs within Existing Parallel Models

Christopher D. Krieger, M. Strout, J. Roelofs, A. Bajwa
{"title":"Executing Optimized Irregular Applications Using Task Graphs within Existing Parallel Models","authors":"Christopher D. Krieger, M. Strout, J. Roelofs, A. Bajwa","doi":"10.1109/SC.Companion.2012.43","DOIUrl":null,"url":null,"abstract":"Many sparse or irregular scientific computations are memory bound and benefit from locality improving optimizations such as blocking or tiling. These optimizations result in asynchronous parallelism that can be represented by arbitrary task graphs. Unfortunately, most popular parallel programming models with the exception of Threading Building Blocks (TBB) do not directly execute arbitrary task graphs. In this paper, we compare the programming and execution of arbitrary task graphs qualitatively and quantitatively in TBB, the OpenMP doall model, the OpenMP 3.0 task model, and Cilk Plus. We present performance and scalability results for 8 and 40 core shared memory systems on a sparse matrix iterative solver and a molecular dynamics benchmark.","PeriodicalId":6346,"journal":{"name":"2012 SC Companion: High Performance Computing, Networking Storage and Analysis","volume":"40 1","pages":"261-268"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 SC Companion: High Performance Computing, Networking Storage and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SC.Companion.2012.43","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Many sparse or irregular scientific computations are memory bound and benefit from locality improving optimizations such as blocking or tiling. These optimizations result in asynchronous parallelism that can be represented by arbitrary task graphs. Unfortunately, most popular parallel programming models with the exception of Threading Building Blocks (TBB) do not directly execute arbitrary task graphs. In this paper, we compare the programming and execution of arbitrary task graphs qualitatively and quantitatively in TBB, the OpenMP doall model, the OpenMP 3.0 task model, and Cilk Plus. We present performance and scalability results for 8 and 40 core shared memory systems on a sparse matrix iterative solver and a molecular dynamics benchmark.
在现有并行模型中使用任务图执行优化的不规则应用程序
许多稀疏或不规则的科学计算都是内存受限的,并受益于局部性改进的优化,如阻塞或平铺。这些优化产生异步并行性,可以用任意任务图表示。不幸的是,除了线程构建块(TBB)之外,大多数流行的并行编程模型都不能直接执行任意任务图。本文对TBB、OpenMP doall模型、OpenMP 3.0任务模型和Cilk Plus中任意任务图的编程和执行进行了定性和定量的比较。我们在稀疏矩阵迭代求解器和分子动力学基准上给出了8核和40核共享内存系统的性能和可扩展性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信