An efficient algorithm for approximate betweenness centrality computation

Mostafa Haghir Chehreghani
{"title":"An efficient algorithm for approximate betweenness centrality computation","authors":"Mostafa Haghir Chehreghani","doi":"10.1145/2505515.2507826","DOIUrl":null,"url":null,"abstract":"Betweenness centrality is an important centrality measure widely used in social network analysis, route planning etc. However, even for mid-size networks, it is practically intractable to compute exact betweenness scores. In this paper, we propose a generic randomized framework for unbiased approximation of betweenness centrality. The proposed framework can be adapted with different sampling techniques and give diverse methods. We discuss the conditions a promising sampling technique should satisfy to minimize the approximation error and present a sampling method partially satisfying the conditions. We perform extensive experiments and show the high efficiency and accuracy of the proposed method.","PeriodicalId":20528,"journal":{"name":"Proceedings of the 22nd ACM international conference on Information & Knowledge Management","volume":"61 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2013-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 22nd ACM international conference on Information & Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2505515.2507826","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Betweenness centrality is an important centrality measure widely used in social network analysis, route planning etc. However, even for mid-size networks, it is practically intractable to compute exact betweenness scores. In this paper, we propose a generic randomized framework for unbiased approximation of betweenness centrality. The proposed framework can be adapted with different sampling techniques and give diverse methods. We discuss the conditions a promising sampling technique should satisfy to minimize the approximation error and present a sampling method partially satisfying the conditions. We perform extensive experiments and show the high efficiency and accuracy of the proposed method.
一种高效的近似中间度中心性计算算法
中间中心性是一种重要的中心性度量,广泛应用于社会网络分析、路线规划等领域。然而,即使对于中等规模的网络,也很难计算出精确的中间值。在本文中,我们提出了一个通用的随机框架来无偏逼近中间性中心性。所提出的框架可以适应不同的采样技术,并给出不同的方法。讨论了一种有前途的采样技术为使近似误差最小化所应满足的条件,并提出了一种部分满足这些条件的采样方法。我们进行了大量的实验,并证明了该方法的高效率和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信