{"title":"An efficient algorithm for approximate betweenness centrality computation","authors":"Mostafa Haghir Chehreghani","doi":"10.1145/2505515.2507826","DOIUrl":null,"url":null,"abstract":"Betweenness centrality is an important centrality measure widely used in social network analysis, route planning etc. However, even for mid-size networks, it is practically intractable to compute exact betweenness scores. In this paper, we propose a generic randomized framework for unbiased approximation of betweenness centrality. The proposed framework can be adapted with different sampling techniques and give diverse methods. We discuss the conditions a promising sampling technique should satisfy to minimize the approximation error and present a sampling method partially satisfying the conditions. We perform extensive experiments and show the high efficiency and accuracy of the proposed method.","PeriodicalId":20528,"journal":{"name":"Proceedings of the 22nd ACM international conference on Information & Knowledge Management","volume":"61 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2013-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 22nd ACM international conference on Information & Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2505515.2507826","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Betweenness centrality is an important centrality measure widely used in social network analysis, route planning etc. However, even for mid-size networks, it is practically intractable to compute exact betweenness scores. In this paper, we propose a generic randomized framework for unbiased approximation of betweenness centrality. The proposed framework can be adapted with different sampling techniques and give diverse methods. We discuss the conditions a promising sampling technique should satisfy to minimize the approximation error and present a sampling method partially satisfying the conditions. We perform extensive experiments and show the high efficiency and accuracy of the proposed method.